• Title/Summary/Keyword: ensemble 평균

Search Result 142, Processing Time 0.028 seconds

A Study on the Timing of Spring Onset over the Republic of Korea Using Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 우리나라 봄 시작일에 관한 연구)

  • Kwon, Jaeil;Choi, Youngeun
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.675-689
    • /
    • 2014
  • This study applied Ensemble Empirical Mode Decomposition(EEMD), a new methodology to define the timing of spring onset over the Republic of Korea and to examine its spatio-temporal change. Also this study identified the relationship between spring onet timing and some atmospheric variations, and figured out synoptic factors which affect the timing of spring onset. The averaged spring onset timing for the period of 1974-2011 was 11th, March in Republic of Korea. In general, the spring onset timing was later with higher latitude and altitude regions, and it was later in inland regions than in costal ones. The correlation analysis has been carried out to find out the factors which affect spring onset timing, and global annual mean temperature, Arctic Oscillation(AO), Siberian High had a significant correlation with spring onset timing. The multiple regression analysis was conducted with three indices which were related to spring onset timing, and the model explained 64.7%. As a result of multiple regression analysis, the effect of annual mean temperature was the greatest and that of AO was the second. To find out synoptic factors affecting spring onset timing, the synoptic analysis has been carried out. As a result the intensity of meridional circulation represented as the major factor affect spring onset timing.

  • PDF

Spatial Entities Extraction using Bidirectional LSTM-CRF Ensemble (Bidirectional LSTM-CRF 앙상블을 이용한 공간 개체 추출)

  • Min, Tae Hong;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.133-136
    • /
    • 2017
  • 공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.

  • PDF

Geometric Analysis of Convergence of FXLMS Algorithm (FXLMS 알고리즘 수렴성의 기하학적 해석)

  • Kang Min Sig
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.40-47
    • /
    • 2005
  • This paper concerns on Filtered-x least mean square (FXLMS) algorithm for adaptive estimation of feedforward control parameters. The conditions for convergence in ensemble mean of the FXLMS algorithm are derived and the directional convergence properties are discussed from a new geometric vector analysis. The convergence and its directionality are verified along with some computer simulations.

Spatial Entities Extraction using Bidirectional LSTM-CRF Ensemble (Bidirectional LSTM-CRF 앙상블을 이용한 공간 개체 추출)

  • Min, Tae Hong;Lee, Jae Sung
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.133-136
    • /
    • 2017
  • 공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.

  • PDF

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin (장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로)

  • Kim, Taereem;Joo, Kyungwon;Cho, Wanhee;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.61-68
    • /
    • 2019
  • Recently, climate indices represented by quantifying atmospheric-ocean circulation patterns have been widely used to predict hydrologic variables for considering long-term climate variability. Hydrologic forecasting models based on artificial neural networks have been developed to provide accurate and stable forecasting performance. Forecasts of hydrologic variables considering climate variability can be effectively used for long-term management of water resources and environmental preservation. Therefore, identifying significant indicators for hydrologic variables and applying forecasting models still remains as a challenge. In this study, we selected representative climate indices that have significant relationships with dam inflow time series in the Han-River basin, South Korea for applying the dam inflow forecasting model. For this purpose, the ensemble empirical mode decomposition(EEMD) method was used to identify a significance between dam inflow and climate indices and an artificial neural network(ANN) ensemble model was applied to overcome the limitation of a single ANN model. As a result, the forecasting performances showed that the mean correlation coefficient of the five dams in the training period is 0.88, and the test period is 0.68. It can be expected to come out various applications using the relationship between hydrologic variables and climate variability in South Korea.

Ensemble Learning-Based Prediction of Good Sellers in Overseas Sales of Domestic Books and Keyword Analysis of Reviews of the Good Sellers (앙상블 학습 기반 국내 도서의 해외 판매 굿셀러 예측 및 굿셀러 리뷰 키워드 분석)

  • Do Young Kim;Na Yeon Kim;Hyon Hee Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.173-178
    • /
    • 2023
  • As Korean literature spreads around the world, its position in the overseas publishing market has become important. As demand in the overseas publishing market continues to grow, it is essential to predict future book sales and analyze the characteristics of books that have been highly favored by overseas readers in the past. In this study, we proposed ensemble learning based prediction model and analyzed characteristics of the cumulative sales of more than 5,000 copies classified as good sellers published overseas over the past 5 years. We applied the five ensemble learning models, i.e., XGBoost, Gradient Boosting, Adaboost, LightGBM, and Random Forest, and compared them with other machine learning algorithms, i.e., Support Vector Machine, Logistic Regression, and Deep Learning. Our experimental results showed that the ensemble algorithm outperforms other approaches in troubleshooting imbalanced data. In particular, the LightGBM model obtained an AUC value of 99.86% which is the best prediction performance. Among the features used for prediction, the most important feature is the author's number of overseas publications, and the second important feature is publication in countries with the largest publication market size. The number of evaluation participants is also an important feature. In addition, text mining was performed on the four book reviews that sold the most among good-selling books. Many reviews were interested in stories, characters, and writers and it seems that support for translation is needed as many of the keywords of "translation" appear in low-rated reviews.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Development of a Deep Learning-based Midterm PM2.5 Prediction Model Adapting to Trend Changes (경향성 변화에 대응하는 딥러닝 기반 초미세먼지 중기 예측 모델 개발)

  • Dong Jun Min;Hyerim Kim;Sangkyun Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.251-259
    • /
    • 2024
  • Fine particulate matter, especially PM2.5 with a diameter of less than 2.5 micrometers, poses significant health and economic risks. This study focuses on the Seoul region of South Korea, aiming to analyze PM2.5 data and trends from 2017 to 2022 and develop a mid-term prediction model for PM2.5 concentrations. Utilizing collected and produced air quality and weather data, reanalysis data, and numerical model prediction data, this research proposes an ensemble evaluation method capable of adapting to trend changes. The ensemble method proposed in this study demonstrated superior performance in predicting PM2.5 concentrations, outperforming existing models by an average F1 Score of approximately 42.16% in 2019, 58.92% in 2021, and 34.79% in 2022 for future 3 to 6-day predictions. The model maintains performance under changing environmental conditions, offering stable predictions and presenting a mid-term prediction model that extends beyond the capabilities of existing deep learning-based short-term PM2.5 forecasts.

Analysis of Bounding Performance for LDPC codes and Turbo-Like Codes (LDPC 코드와 터보 코드의 성능 상향 한계 분석)

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.138-143
    • /
    • 2006
  • We present upper bounds for the maximum-likelihood decoding performance of particular LDPC codes and turbo-like codes with particular interleavers. Previous research developed upper bounds for LDPC codes and turbo-like codes using ensemble codes or the uniformly interleaved assumption, which bound the performance averaged over all ensemble codes or all interleavers. Proposed upper bounds are based on the simple bound and estimated weight distributions including the exact several smallest distance terms because if either estimated weight distributions on their own or the exact several smallest distance terms only are used, an accurate bound can not be obtained.