• Title/Summary/Keyword: enhanced plant growth

Search Result 509, Processing Time 0.029 seconds

Mobilization of Heavy Metals Induced by Button Mushroom Compost in Sunflower

  • Lee, Jong-Jin;Lee, Heon-Hak;Kim, Sung-Chul;Yoo, Jeoung-Ah;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • Button mushroom compost (BMC) was prepared by fermenting the mixture of waste button mushroom bed collected from Boryeong area in South Korea (4): sawdust (8) : pig and fowl manure (1) for 40 days at $30^{\circ}C$. The BMC compromised diverse microorganisms including aerobic bacteria $8.1{\times}10^6cfu\;g^{-1}$, Gram negative bacteria $1.7{\times}10^7cfu\;g^{-1}$, genus Bacillus $6.4{\times}10^6cfu\;g^{-1}$, genus Pseudomonas $1.5{\times}10^4cfu\;g^{-1}$, actinomycetes $1.0{\times}10^4cfu\;g^{-1}$, and fungi $3.5{\times}10^3cfu\;g^{-1}$. BMC was used as a microbial inoculant for estimating the mobilization of heavy metals in soil or plant. When metal solubilization potential of BMC was assessed in a batch experiment, the inoculation of BMC was shown to increase the concentrations of water soluble Co, Pb, Cd, and Zn by 29, 26, 27, and 43% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 17, 15, 18, and 21% respectively in Co, Pb, Cd, and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb, Cd, and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction from the soils contaminated with heavy metals such as Co, Pb, Cd, and Zn.

Impact of Climate Change on Yield and Canopy Photosynthesis of Soybean (RCP 8.5 기후변화 조건에서 콩의 군락 광합성 및 수량 반응 평가)

  • Wan-Gyu, Sang;Jae-Kyeong, Baek;Dongwon, Kwon;Jung-Il, Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2022
  • Changes in air temperature, CO2 concentration and precipitation due to climate change are expected to have a significant impact on soybean productivity. This study was conducted to evaluate the climate change impact on growth and development of determinate soybean cultivar in the southern parts of Korea. The high temperature during vegetative period, which does not accompany the increase of CO2 concentration, increased the canopy photosynthetic rate in soybean, but after flowering, the high temperature above the optimal ranges interrupts the photosynthetic metabolism. In yield and yield components, high temperature reduced both the pod and seed number and single seed weight, resulting in a reduction of total seed yield. On the other hand, the increase in CO2 concentration dramatically increased the canopy photosynthetic rate over the whole growth period. In addition, high CO2 concentration increased the number of pods and seeds, which had a positive effect on total seed yield. Under concurrent elevation of air temperature and CO2 concentration, canopy photosynthesis increased significantly, but enhanced canopy photosynthesis did not lead to an increase in soybean seed yield. The increase in biomass and branch by enhanced canopy photosynthesis seems to be attributed to an increase in the total number of pods and seeds per plant, which compensates for the negative effects of high temperature on pod development. However, Single seed weight tended to decrease rapidly by high temperature, regardless of CO2 concentration level. Elevated CO2 concentration did not compensate for the poor distribution of assimilations from source to sink caused by high temperature. These results show that the damage of future soybean yield and quality is closely related to high temperature stress during seed filling period.

Effects of Residues and Extracts of Leaf and Root Vegetables on the Germination and Growth of Cucumber and Tomato (채소류의 잔유물과 추출물이 오이와 토마토의 발아 및 초기생장에 미치는 영향)

  • Park Kuen Woo;Lee Jeong Hun;Kim Min-Jea;Won Jae Hee
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.200-208
    • /
    • 2004
  • Effects of cucumber and tomato seed germination by previous leaf and root vegetables (cabbage, radish, welsh onion, lettuce) residue in soil were tested in pot condition. Overall, suppression effect of welsh onion residue was the greatest in 4 tested crop residue and followed by radish, cabbage and lettuce, but lettuce residue didn't have effect on cucumber seed germination. Suppression were maintained ca. 20 days but after the time point, growth of cucumber and tomato were enhanced. Enhancing effect of welsh onion residue was the greatest in 4 tested crops residues and followed by radish, cabbage and lettuce. As a conclusion, residue of welsh onion, radish and cabbage were suppressed the germination of cucumber and tomato seeds but enhanced growth after 20 days of treatment. To verify the effective concentration of residue on suppression of germination and growth of radicle of cucumber and tomato, plant extract of welsh onion, radish, cabbage and lettuce were diluted as 5, 10, 17, 23, 35, 50, and $65\%$, and then tested. In low concentration treatment, 5, 10, 17, and $23\%$, all 4 crop extracts didn't suppress cucumber seed germination. High concentration of lettuce extract, 35, 50, and $65\%$, cucumber seed didn't germinate at all. In case of welsh onion extract, only $65\%$ treatment suppressed cucumber seed germination. In low concentration treatment, 17, and $23\%$, only the welsh onion extract suppressed young radicle. In case of high concentration treatment, except $35\%$, all four crops extract suppressed cucumber radicle growth. In low concentration treatment, tomato seed germination was suppressed by lettuce extract only but in high concentration treatment, 35, 50, and $65\%$, all extracts suppressed germination. Especially higher than $50\%$ treatment, tomato seed didn't germinate at all. Radicle growth was highly suppressed in welsh onion and lettuce extract, higher than $23\%$ concentration. As conclusion, leaf and root vegetable extracts suppressed cucumber and tomato seed germination and in high concentration, also suppressed radicle growth.

Effect of Organic Fertilizer Ratios on the Growth of Spiraea × bumalda 'Gold Mound' in the Container Green Wall Systems with Rainwater Utilization (빗물활용 벽면녹화 용기 내 유기질비료 배합비에 따른 노랑조팝나무의 생육 반응)

  • Ju, Jin-Hee;Kim, Hya-Ran;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1417-1423
    • /
    • 2011
  • For evaluating the effect of various organic fertilizer ratios on the Spiraea${\times}$bumalda 'Gold Mound' growth, a container green wall system experiment was conducted in a greenhouse at Konkuk university. The experimental planting grounds were prepared with different organic fertilizer ratios ($A_1L_0$, $A_8L_1$, $A_4L_1$ $A_2L_1$ and $A_1L_1$) and with drought tolerance and an ornamental value Spiraea${\times}$bumalda 'Gold Mound' was planted. The change in soil moisture contents, plant height, number of branches, number of dead leafs, number of leaf, number of shoots, length of node, length of leaf, width of leaf, root-collar caliper, chlorophyll contents and survival rate were investigated from April to Jun 2010. 1. The result of soil moisture contents was analyzed with weight unit in the container green wall system during the dry summer season. The soil moisture contents were significantly enhanced in the container green wall system in increasing order as the amount of fertilizer level increased $A_1L_1$ > $A_2L_1$ > $A_4L_1$ > $A_8L_1$ > $A_1L_0$. 2. Compared to the control treatment (amended soil with 100% + organic fertilizer 0%) application, the highest plant growth was observed in the treatment of $A_2L_1$(amended soil with 67% + organic fertilizer 13%) application. However, the differences between the organic fertilizer ratio treatments of $A_1L_1$, $A_4L_1$, $A_8L_1$, and the $A_1L_0$ organic fertilizer application were mostly not significant. 3. The survival rate increased with the increasing application of organic fertilizer, but in the control treatment (amended soil with 100% + organic fertilizer 0%) application all the plants died. Experimental results from the presented study clearly demonstrated that the organic fertilizer improved the survival rate more than the Spiraea${\times}$bumalda 'Gold Mound' growth at different levels of organic fertilizers. This strain can be utilized as a plant growth application in living wall systems during the dry summer season. Therefore, Spiraea${\times}$bumalda 'Gold Mound' is expected to be a highly valuable shrub for the green wall system if it should be considered in integration with stormwater retention or as a soil conditioner for increasing soil water contents in planting ground.

Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests (벤질리덴아세톤 화학구조 변이에 따른 생리활성 변화 분석 및 식물 병해충 방제 효과)

  • Seo, Sam-Yeol;Jun, Mi-Hyun;Chun, Won-Su;Lee, Sung-Hong;Seo, Ji-Ae;Yi, Young-Keun;Hong, Yong-Pyo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Benzylideneacetone (BZA) is a compound derived from culture broth of an entomopathogenic bacterium, Xenorhabdus nematophila (Xn). Its immunosuppressive activity is caused by its inhibitory activity against eicosanoid biosynthesis. This BZA is being developed as an additive to enhance control efficacy of other commercial microbial insecticides. This study was focused on the enhancement of the immunosuppressive activity of BZA by generating its chemical derivatives toward decrease of its hydrophobicity. Two hydroxylated BZA and one sugar-conjugated BZA were chemically synthesized. All derivatives had the inhibitory activities of BZA against phospholipase $A_2$ ($PLA_2$) and phenoloxidase (PO) of the diamondback moth, Plutella xylostella, but BZA was the most potent. Mixtures of any BZA derivative with Bacillus thuringiensis (Bt) significantly increased pathogenicity of Bt. BZA also inhibited colony growth of four plant pathogenic fungi. However, BZA derivatives (especially the sugar-conjugated BZA) lost the antifungal activity. These results indicated that BZA and its derivatives inhibited catalytic activities of two immune-associated enzymes ($PLA_2$ and PO) of P. xylostella and enhanced Bt pathogenicity. We suggest its use to control plant pathogenic fungi.

Micropropagation and RAPD Analysis of Somaclonal Variants in Lavandula spica cv. Marino (라벤다의 기내증식과 RAPD에 의한 체세포 변이체 분석)

  • Li, Xian Ri;Seong, Eun-Soo;Kim, Il-Seop;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.2
    • /
    • pp.94-100
    • /
    • 1999
  • To establish the mass propagation system of Lavandula spica cv. Marino, shoot tip, node, internode and leaf segment cultures were carried out. RAPD was applied to detect the somaclonal variation. Callus induction was very high in the medium supplemented with 1 mg/l 2.4-D, 2 mg/l NAA. especially and combined with 0.05 mg/l BAP from leaves. Shoot formation was high with $2{\sim}4\;mg/l$ BAP or 4 mg/l BAP + 0.2 mg/l NAA from shoot tip. Shoot proliferation was 9.1 times in the $B_{5}$ medium with 0.5 mg/l BAP and 0.01 mg/l NAA. Root formation was improved in NAA, which was the concentration of 0.1 to 1 mg/l and 1 mg/l IAA. Nursery survival rate was enhanced over 90% and growth was looked good in the acclimation soil consisting of peatmoss : vermiculite : perlite (1:1:1, v:v:v). Randomly amplified polymorphic DNA banding patterns based on polymerase chain reaction (PCR) were used to assess the genetic variation in plants regenerated from in vitro culture.

  • PDF

Effect of Plant Growth Regulators and Antioxidants on Callus Induction and Plant Regeneration from Seed Culture of Orchardgrass (오차드그래스의 종자배양에 있어서 식물생장조절물질과 항산화제가 캘러스유도와 식물체 재분화에 미치는 영향)

  • Lee Ki-Won;Lee Sang-Hoon;Lee Dong-Gi;Woo Hyun-Sook;Kim Do-Hyun;Choi Myung Suk;Kim Ki Young;Lee Hyoshin;Lee Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.191-198
    • /
    • 2005
  • In order to optimize tissue culture conditions for genetic transformation of orchardgrass, the effects of culture medium supplements on tissue culture responses were investigated with mature seeds of 3 cultivars, 'Frode'. 'Roughrider' and 'Frontier' as explant tissues. Callus induction medium containing 3mg/L 2,4-D or 3mg/L dicamba each with 0.1mg/L BA was optimal fer embryogenic callus formation from mature seed and had a strong effect on successive plant regeneration. The regeneration frequency from embryogenic callus among cultivars were descending order of Roughrider > Frode > Frontier. Supplementation of the regeneration media with 10mg/L $AgNO_3$ and 40mg/L cysteine enhanced frequency of plant regeneration. Efficient regeneration system established in this study will be useful fur molecular breeding of orchardgrass through genetic transformation.

Effect of High Temperature, Daylength, and Reduced Solar Radiation on Potato Growth and Yield (고온, 일장 및 저일사 조건이 감자 생육 및 수량에 미치는 영향)

  • Kim, Yean-Uk;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.74-87
    • /
    • 2016
  • Potato phenology, growth, and yield are projected to be highly affected by global warming in the future. The objective of this study was to examine the responses of potato growth and yield to environmental elements like temperature, solar radiation, and daylength. Planting date experiments under open field condition were conducted using three cultivars differing in maturity group (Irish Cobbler and Superior as early; Atlantic as mid-late maturing) at eight different planting dates. In addition, elevated temperature experiment was conducted in four plastic houses controlled to target temperatures of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3^{\circ}C$, and $AT+5^{\circ}C$ using cv. Superior. Tuber initiation onset was found to be hastened curve-linearly with increasing temperature, showing optimum temperature around $22-24^{\circ}C$, while delayed by longer photoperiod and lower solar radiation in Superior and Atlantic. In the planting date experiments where the average temperature is near optimal and solar radiation, rainfall, pest, and disease are not limiting factor for tuber yield, the most important determinant was growth duration, which is limited by the beginning of rainy season in summer and frost in the late fall. Yield tended to increase along with delayed tuber initiation. Within the optimum temperature range ($17^{\circ}-22^{\circ}C$), larger diurnal range of temperature increased the tuber yield. In an elevated temperature treatment of $AT+5.0^{\circ}C$, plants failed to form tubers as affected by high temperature, low irradiance, and long daylength. Tuber number at early growth stage was reduced by higher temperature, resulting in the decrease of assimilates allocated to tuber and the reduction of average tuber weight. Stem growth was enhanced by elevated temperature at the expense of tuber growth. Consequently, tuber yield decreased with elevated temperature above ambient and drop to almost nil at $AT+5.0^{\circ}C$.

Effect of Plant Growth Regulators on the Ripening and Quality of 'Campbell Early' Grape Fruit (Vitis laburuscana B.) (식물생장조절제(植物生長調節劑)가 포도 'Campbell Early' (Vitis labruscana B.) 품종(品種)의 과실성숙(果實成熟) 및 품질(品質)에 미치는 영향(影響))

  • Kim, Jong Hyun;Lee, Jae Change;Hwang, Yong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • This experiment was aimed to develop possible methods to control the maturity of grape berries through the application of exogenous plant growth substances and physical treatments such as defoliation or girdling. 1. Chlormequat and paclobutrazol increased anthocyanin but did not affect soluble solids contents and maturity. Girdling enhanced maturation and solids accumulation whereas defoliation delayed maturity. Solids content of berries in defoliation treatment did not reach to the level of other treatments even when fully ripened. 2. Ripening of grapes is greatly delayed for 20 to 30 days by the application of auxins (2,4-D and fenoprop) compared to the untreated control. Uneven ripening of berries in those clusters was observed when the concentration of auxin was over 50 ppm. Thus, about 30% of berries remained green until the normal berries were overripened. 3. Gibberellin did not affect the maturity of grape berries but maturity was greatly delayed when GA was applied with auxins. Also, uneven coloration between berries was observed such as in the application of auxin alone. 4. Ethephon application combinded with calcium at veraison showed no effect on berry ripening but increased anthocaynin contents. It can be concluded that harvest time of 'Campbell Early' grapes can be effectively extended by delaying the maturity through the application of auxin.

  • PDF

Enhanced Production of hCTLA4Ig through Increased Permeability in Transgenic Rice Cell Cultures (형질전환 벼 현탁세포 배양에서 투과성 증진을 통한 hCTLA4Ig의 생산성 증대)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Lim, Jung-Ae;Park, Hye-Rim;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • In this system, rice cells were genetically modified to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter induced by sugar depletion. Even though the target protein fused with signal sequence peptide, plant cell wall can be a barrier against secretion of recombinant proteins. Therefore, hCTLA4Ig can be trapped inside cell wall or remained in intracellular space. In this study, to enhance the secretion of hCTLA4Ig from cytoplasm and cell walls into the medium, permeabilizing agents, such as dimethyl sulfoxide (DMSO), Triton X-100 and Tween 20, were applied in transgenic rice cell cultures. When 0.5% (v/v) of DMSO was added in sugar-free medium, intracellullar hCTLA4Ig was increased, on the other hand, the secreted extracellular hCTLA4Ig was lower than that of control. DMSO did not give permeable effects on transgenic rice cell cultures. And Triton X-100 was toxic to rice cells and also did not give enhancing permeability of cells. When 0.05% (v/v) Tween 20 was added in rice cell cultures, however, intracellular hCTLA4Ig was lower than that of control cultures. And the maximum 44.76 mg/L hCTLA4Ig was produced for 10 days after induction, which was 1.4-fold increase compared to that of control cultures. Especially, Tween 20 at 0.05% (v/v) showed the positive effect on the secretion of hCTLA4Ig though the decrease of intracellular hCTLA4Ig. Also, Tween 20 as a non-toxic surfactant did not affect the cell growth, cell viability and protease activity. In conclusion, secretion of hCTLA4Ig could be increased by enhancing permeability of cells regardless of the cell growth, cell viability and protease activity.