• Title/Summary/Keyword: enhanced map

Search Result 236, Processing Time 0.035 seconds

Usefulness of subtraction pelvic magnetic resonance imaging for detection of ovarian endometriosis

  • Lee, Hyun Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.2
    • /
    • pp.90-97
    • /
    • 2020
  • Background: To minimize damage to the ovarian reserve, it is necessary to evaluate the follicular density in the ovarian tissue surrounding endometriosis on preoperative imaging. The purpose of the present study was to evaluate the usefulness of subtraction pelvic magnetic resonance imaging (MRI) to detect ovarian reserve. Methods: A subtracted T1-weighted image (subT1WI) was obtained by subtracting unenhanced T1WI from contrast-enhanced T1WI (ceT1WI) with similar parameters in 22 patients with ovarian endometriosis. The signal-to-noise ratio (SNR) in ovarian endometriosis, which was classified into the high signal intensity and iso-to-low signal intensity groups on the T2-weighted image, was compared to that in normal ovarian tissue. To evaluate the effect of contrast enhancement, a standardization map was obtained by dividing subT1WI by ceT1WI. Results: On visual assessment of 22 patients with ovarian endometriosis, 16 patients showed a high signal intensity, and 6 patients showed an iso-to-low signal intensity on T1WI. Although SNR in endometriosis with a high signal intensity was higher than that with an iso-to-low signal intensity, there was no difference in SNR after the subtraction (13.72±77.55 vs. 63.03±43.90, p=0.126). The area of the affected ovary was smaller than that of the normal ovary (121.10±22.48 vs. 380.51±75.87 ㎟, p=0.002), but the mean number of pixels in the viable remaining tissue of the affected ovary was similar to that of the normal ovary (0.53±0.09 vs. 0.47±0.09, p=0.682). Conclusion: The subtraction technique used with pelvic MRI could reveal the extent of endometrial invasion of the normal ovarian tissue and viable remnant ovarian tissue.

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

Analysis of Clear Sky Index Defined by Various Ways Using Solar Resource Map Based on Chollian Satellite Imagery (천리안 위성 영상 기반 태양자원지도를 활용한 다양한 정의에서의 청천지수 특성 분석)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.47-57
    • /
    • 2019
  • Clear sky indices were estimated by various ways based on in-situ observation and satellite-derived solar irradiance. In principle, clear sky index defined by clear sky solar irradiance indicates the impacts of cloud on the incoming solar irradiance. However, clear sky index widely used in energy sciences is formulated by extraterrestrial irradiance, which implies the extinction of solar irradiance due to mainly aerosol, water vapor and clouds drops. This study examined the relative difference of clear sky indices and then major characteristics of clear sky irradiance when sky is clear are investigated. Clear sky is defined when clear sky index based on clear sky irradiance is higher than 0.9. In contrast, clear sky index defined by extraterrestrial irradiance is distributed between 0.4 and 0.8. When aerosol optical depth and air mass coefficient are relative larger, solar irradiance is lower due to enhanced extinction, which leads to the lower value of clear sky index defined by extraterrestrial irradiance.

Cause Analysis and Reduction of Safety Accident in Modular Construction - Focusing on Manufacturing and Construction Process - (모듈러 건축에서의 안전사고 원인 분석 및 저감방안 - 제작 및 시공단계 작업을 중심으로 -)

  • Jeong, Gilsu;Lee, Hyunsoo;Park, Moonseo;Hyun, Hosang;Kim, Hyunsoo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.157-168
    • /
    • 2019
  • Modular Construction is regarded as having enhanced safety compared to traditional construction since most of modular manufacturing process in plants. Unlike general consideration for safety in modular construction, several industrial accident data and studies have pointed out that the accident rate of modular construction is not enough less as much as the practitioners have expected. It means that there is a clear need for improvement of safety management in modular construction. To enhance safety, it is necessary to identify the type and cause of accident through accident cases in order to prevent safety accident in advance. In this consideration, this study analyzed the types and causes of accidents through root cause analysis procedure with accident cases of U.S. OSHA. The classification was carried out in the order of process type, accident type and cause of accident. By following the classification criteria in this study, the causal factor was derived and the root cause map was created. Based on the analysis results, cross-analysis was conducted and it is shown that activity characteristics of modular construction are related to safety accidents. In addition, prevention methods to reduce safety accident by major activity are presented in terms of organizational, educational and technical aspects. This study contributes that the result can be used as the basic safety management in the manufacturing and construction process of modular construction.

Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging

  • Lee, Youngjun;Jee, Won-Hee;Whang, Yoon Sub;Jung, Chan Kwon;Chung, Yang-Guk;Lee, So-Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.118-128
    • /
    • 2021
  • Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1- and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm2), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

Development of underground facility information collection technology based on 3D precision exploration (3차원 정밀탐사 지하시설물 정보 수집 기술 개발)

  • Jisong RYU;Yonggu JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.56-66
    • /
    • 2023
  • Safety accidents are increasing, such as changes in groundwater levels due to construction work or natural influences, or ground cave-ins caused by soil runoff from old water supply and sewage pipes. In addition, underground facility management agencies must make efforts to improve the accuracy of underground information through continuous investigation and exploration in accordance with the Special Act on Enhanced Underground Safety Management. Accordingly, in this study, we defined the configuration of equipment and data processing method to collect 3D precise exploration underground facility information and developed 3D underground facility information collection technology to ensure accuracy of underground facilities. As a result of verifying the developed technology, the horizontal accuracy improved by an average of 6cm compared to the existing method, making it possible to acquire 3D underground facility information within the error range of the public survey work regulations.

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.

[ $Gd(DTPA)^{2-}$ ]-enhanced, and Quantitative MR Imaging in Articular Cartilage (관절연골의 $Gd(DTPA)^{2-}$-조영증강 및 정량적 자기공명영상에 대한 실험적 연구)

  • Eun Choong-Ki;Lee Yeong-Joon;Park Auh-Whan;Park Yeong-Mi;Bae Jae-Ik;Ryu Ji Hwa;Baik Dae-Il;Jung Soo-Jin;Lee Seon-Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.100-108
    • /
    • 2004
  • Purpose : Early degeneration of articular cartilage is accompanied by a loss of glycosaminoglycan (GAG) and the consequent change of the integrity. The purpose of this study was to biochemically quantify the loss of GAG, and to evaluate the $Gd(DTPA)^{2-}$-enhanced, and T1, T2, rho relaxation map for detection of the early degeneration of cartilage. Materials and Methods : A cartilage-bone block in size of $8mm\;\times\;10mm$ was acquired from the patella in each of three pigs. Quantitative analysis of GAG of cartilage was performed at spectrophotometry by use of dimethylmethylene blue. Each of cartilage blocks was cultured in one of three different media: two different culture media (0.2 mg/ml trypsin solution, 1mM Gd $(DTPA)^{2-}$ mixed trypsin solution) and the control media (phosphate buffered saline (PBS)). The cartilage blocks were cultured for 5 hrs, during which MR images of the blocks were obtained at one hour interval (0 hr, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr). And then, additional culture was done for 24 hrs and 48 hrs. Both T1-weighted image (TR/TE, 450/22 ms), and mixed-echo sequence (TR/TE, 760/21-168ms; 8 echoes) were obtained at all times using field of view 50 mm, slice thickness 2 mm, and matrix $256\times512$. The MRI data were analyzed with pixel-by-pixel comparisons. The cultured cartilage-bone blocks were microscopically observed using hematoxylin & eosin, toluidine blue, alcian blue, and trichrome stains. Results : At quantitation analysis, GAG concentration in the culture solutions was proportional to the culture durations. The T1-signal of the cartilage-bone block cultured in the $Gd(DTPA)^{2-}$ mixed solution was significantly higher ($42\%$ in average, p<0.05) than that of the cartilage-bone block cultured in the trypsin solution alone. The T1, T2, rho relaxation times of cultured tissue were not significantly correlated with culture duration (p>0.05). However the focal increase in T1 relaxation time at superficial and transitional layers of cartilage was seen in $Gd(DTPA)^{2-}$ mixed culture. Toluidine blue and alcian blue stains revealed multiple defects in whole thickness of the cartilage cultured in trypsin media. Conclusion : The quantitative analysis showed gradual loss of GAG proportional to the culture duration. Microimagings of cartilage with $Gd(DTPA)^{2-}$-enhancement, relaxation maps were available by pixel size of $97.9\times195\;{\mu}m$. Loss of GAG over time better demonstrated with $Gd(DTPA)^{2-}$-enhanced images than with T1, T2, rho relaxation maps. Therefore $Gd(DTPA)^{2-}$-enhanced T1-weighted image is superior for detection of early degeneration of cartilage.

  • PDF