• Title/Summary/Keyword: enhanced SSA

Search Result 8, Processing Time 0.019 seconds

Enhanced Resistance of Transgenic Sweetpotato (Ipomoea batatas Lam.) Plants to Multiple Environmental Stresses Treated with Combination of Water Stress, High Light and High Temperature Stresses

  • Song, Sun-Wha;Kwak, Sang-Soo;Lim, Soon;Kwon, Suk-Yoon;Lee, Haeng-Soon;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Ecophysiological parameters of non-transgenic sweetpotato (NT) and transgenic sweetpotato (SSA) plants were compared to evaluate their resistance to multiple environmental stresses. Stomatal conductance and transpiration rate in NT plants decreased markedly from Day 6 after water was withheld, whereas those values in SSA plants showed relatively higher level during this period. Osmotic potential in SSA plants was reduced more negatively as leaf water potential decreased from Day 8 after dehydration treatment, while such reduction was not shown in NT plants under water stressed condition. SSA plants showed less membrane damage than in NT plants. As water stress and high light stress, were synchronously applied to NT and SSA plants maximal photochemical efficiency of PS II ($F_v/F_m$) in NT plants markedly decreased, while that in SSA plants was maintained relatively higher level. This trend of changes in $F_v/F_m$ between SSA plants and NT plants was more conspicuous as simultaneously treated with water stress, high light and high temperature stress. These results indicate that SSA plants are more resistive than NT plants to multiple environmental stresses and the enhanced resistive characteristics in SSA plants are based on osmotic adjustment under water stress condition and tolerance of membrane.

Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD

  • Raeesi, Farzad;Shirgir, Sina;Azar, Bahman F.;Veladi, Hedayat;Ghaffarzadeh, Hosein
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.719-730
    • /
    • 2020
  • Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.

Establishment and Application of Subway Line Chain OD Using SSA (SSA를 이용한 지하철 노선 Chain OD 구축 및 활용)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.100-111
    • /
    • 2019
  • The existing selected station analysis (SSA) method analyzes the link transfer mode data between origin and destination of individuals passing through stations from a microscopic standpoint. As such, existing SSA is insufficient as it uses integrated analysis using macroscopic data such as subway lines. This research builds a line chain OD based on path search of individual passenger's movement through the subway, and explores means to utilize the findings. First, a method is proposed that searches the traversed subway path from the linked passage modes that the passenger uses and applies the results to SSA line analysis. Compared to the existing SSA, this method provides for analysis of commonly conflicting features such as the line on which the station is passed, and the stations included on the line thanks to the presence of complete information of the individual passenger's traversed path. It also allows for integrated observation of the line chain OD that approaches a certain station. For enhanced understanding, Seoul Metro Line 9 is used as a case study to demonstrate the integrated formulation concept of line chain OD centered around a certain station as well as the macroscopic features of the traversed path that approaches stations included on the line.

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.

Transgenic Plants with Enhanced Tolerance to Environmental Stress by Metabolic Engineering of Antioxidative Mechanism in Chloroplasts (엽록체 항산화기구 대사조절에 의한 환경스트레스 내성 식물)

  • Kwon Suk-Yoon;Lee Young-Pyo;Lim Soon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.151-159
    • /
    • 2005
  • Injury caused by reactive oxygen species (ROS), known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stress. Chloroplasts are specially sensitive to damage by ROS because electrons that escape from the photosynthetic electron transfer system are able to react with relatively high concentration of $O_2$ in chloroplasts. To cope with oxidative stress, plants have evolved an efficient ROS-scavenging enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX), and low molecular weight antioxidants including ascorbate, glutathione and phenolic compounds. To maintain the productivity of plants under the stress condition, it is possible to fortify the antioxidative mechanisms in the chloroplasts by manipulating the antioxidation genes. A powerful gene expression system with an appropriate promoter is key requisite for excellent stress-tolerant plants. We developed a strong oxidative stress-inducible peroxidase (SWPA2) promoter from cultured cells of sweetpotato (Ipomoea batatas) as an industrial platform technology to develop transgenic plants with enhanced tolerance to environmental stress. Recently, in order to develop transgenic sweetpotato (tv. Yulmi) and potato (Solanum tuberosum L. cv. Atlantic and Superior) plants with enhanced tolerance to multiple stress, the genes of both CuZnSOD and APX were expressed in chloroplasts under the control of an SWPA2 promoter (referred to SSA plants). As expected, SSA sweetpotato and potato plants showed enhanced tolerance to methyl viologen-mediated oxidative stress. In addition, SSA plants showed enhanced tolerance to multiple stresses such as temperature stress, drought and sulphur dioxide. Our results strongly suggested that the rational manipulation of antioxidative mechanism in chloroplasts will be applicable to the development of all plant species with enhanced tolerance to multiple environmental stresses to contribute in solving the global food and environmental problems in the 21st century.

Weight optimization of coupling with bolted rim using metaheuristics algorithms

  • Mubina Nancy;S. Elizabeth Amudhini Stephen
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • The effectiveness of coupling with a bolted rim is assessed in this research using a newly designed optimization algorithm. The current study, which is provided here, evaluates 10 contemporary metaheuristic approaches for enhancing the coupling with bolted rim design problem. The algorithms used are particle swarm optimization (PSO), crow search algorithm (CSA), enhanced honeybee mating optimization (EHBMO), Harmony search algorithm (HSA), Krill heard algorithm (KHA), Pattern search algorithm (PSA), Charged system search algorithm (CSSA), Salp swarm algorithm (SSA), Big bang big crunch optimization (B-BBBCO), Gradient based Algorithm (GBA). The contribution of the paper isto optimize the coupling with bolted rim problem by comparing these 10 algorithms and to find which algorithm gives the best optimized result. These algorithm's performance is evaluated statistically and subjectively.

Selection of Transgenic Potato Plants Expressing Both CuZnSOD and APX in Chloroplasts with Enhanced Tolerance to Oxidative Stress (CuZnSOD와 APX를 엽록체에 발현시킨 산화스트레스 내성 형질전환 감자의 선발)

  • Tang, Li;Kwon, Suk-Yoon;Sung, Chang-K;Kwak, Sang-Soo;Lee, Haeng-Seoon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.109-113
    • /
    • 2004
  • In order to develop transgenic potato plants with enhanced tolerance to multiple stress, we constructed the transformation vector expressing both superoxide dismutase and ascorbate peroxidase genes in chloroplasts under the control of a stress-inducible SWPA2 promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system. Transgenic potato plants were regenerated on MS medium containing 100mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of foreign genes into the potato genome. When potato leaf discs were subjected to methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance than non-transgenic or vector-transformed plants. To further study we selected the transgenic plant lines with enhanced tolerance against MV. These plants will be used for further analysis of stress-tolerance to multiple environmental stresses.

Research on Application of SIR-based Prediction Model According to the Progress of COVID-19 (코로나-19 진행에 따른 SIR 기반 예측모형적용 연구)

  • Hoon Kim;Sang Sup Cho;Dong Woo Chae
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Predicting the spread of COVID-19 remains a challenge due to the complexity of the disease and its evolving nature. This study presents an integrated approach using the classic SIR model for infectious diseases, enhanced by the chemical master equation (CME). We employ a Monte Carlo method (SSA) to solve the model, revealing unique aspects of the SARS-CoV-2 virus transmission. The study, a first of its kind in Korea, adopts a step-by-step and complementary approach to model prediction. It starts by analyzing the epidemic's trajectory at local government levels using both basic and stochastic SIR models. These models capture the impact of public health policies on the epidemic's dynamics. Further, the study extends its scope from a single-infected individual model to a more comprehensive model that accounts for multiple infections using the jump SIR prediction model. The practical application of this approach involves applying these layered and complementary SIR models to forecast the course of the COVID-19 epidemic in small to medium-sized local governments, particularly in Gangnam-gu, Seoul. The results from these models are then compared and analyzed.