• 제목/요약/키워드: engineering structures

검색결과 21,384건 처리시간 0.035초

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load

  • Do, Quang Chan;Pham, Dinh Nguyen;Vu, Dinh Quang;Vu, Thi Thuy Anh;Nguyen, Dinh Duc
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.243-259
    • /
    • 2019
  • This study deals with the nonlinear static analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells subjected to axial load based on the classical shell theory. Detailed studies for both nonlinear buckling and post-buckling behavior of truncated conical shells. The truncated conical shells are reinforced by single-walled carbon nanotubes which alter according to linear functions of the shell thickness. The nonlinear equations are solved by both the Airy stress function and Galerkin method based on the classical shell theory. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behavior of FG-CNTRC truncated conical shells are presented. The proposed results are validated by comparing with other authors.

트러스 구조물 사이즈 최적화를 위한 무응력 부재의 선택 (Zero-Stress Member Selection for Sizing Optimization of Truss Structures)

  • 이승혜;이종현;이기학;이재홍
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.61-70
    • /
    • 2021
  • This paper describes a novel zero-stress member selecting method for sizing optimization of truss structures. When a sizing optimization method with static constraints is implemented, the member stresses are affected sensitively with changing the variables. However, because some truss members are unaffected by specific loading cases, zero-stress states are experienced by the elements. The zero-stress members could affect the computational cost and time of sizing optimization processes. Feature selection approaches can be then used to eliminate the zero-stress member from the whole variables prior to the process of optimization. Several numerical truss examples are tested using the proposed methods.

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves

  • Zhou, Hao;Guo, Rui;Jiang, Wei;Liu, Rongzhong;Song, Pu
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.211-224
    • /
    • 2022
  • Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.

Seismic resilience of structures research: A bibliometric analysis and state-of-the-art review

  • Tianhao Yu;Chao Zhang;Xiaonan Niu;Rongting Zhuang
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.369-383
    • /
    • 2023
  • Seismic resilience (SR) plays a vital role in evaluating and improving performance losses along with saving repair costs of structures from potential earthquakes. To further explore the developments, hotspots, and trend directions of SR, a total of 901 articles are obtained from the Web of Science (WoS) database. CiteSpace software is used to conduct a bibliometric analysis, which indicates an upward trend of publications in SR and explores the relationship of countries, journals, cited references, and keywords based on visual maps and detailed tables. Then, based on the results of the bibliometric analysis, a state-of-the-art review is conducted to further explore the current challenges and trend directions of SR. The trend directions can be divided into five categories: (a) SR assessments of infrastructure structures, (b) multi-hazard quantifications of SR, (c) seismic resilient structures, (d) refining and calibrating analytical models, and (e) multi-criteria decision-making frameworks for sustainability and SR.

A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures

  • Lin, Jiahao;Shen, Weiping;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • 제3권3호
    • /
    • pp.215-228
    • /
    • 1995
  • For non-classically damped structures subjected to evolutionary random seismic excitations, the non-stationary random responses are computed by means of a high precision direct (HPD) integration scheme combined with the pseudo excitation method. Only real modes are used, so that the reduced equations of motion remain coupled for such non-classically damped structures. In the given examples, the efficiency of this method is compared with that of the Newmark method.

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가 (The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics)

  • 한상을;박지선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

Discrete element modeling of masonry structures: Validation and application

  • Pulatsu, Bora;Bretas, Eduardo M.;Lourenco, Paulo B.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.563-582
    • /
    • 2016
  • The failure mechanism and maximum collapse load of masonry structures may change significantly under static and dynamic excitations depending on their internal arrangement and material properties. Hence, it is important to understand correctly the nonlinear behavior of masonry structures in order to adequately assess their safety and propose efficient strengthening measures, especially for historical constructions. The discrete element method (DEM) can play an important role in these studies. This paper discusses possible collapse mechanisms and provides a set of parametric analyses by considering the influence of material properties and cross section morphologies on the out of plane strength of masonry walls. Detailed modeling of masonry structures may affect their mechanical strength and displacement capacity. In particular, the structural behavior of stacked and rubble masonry walls, portal frames, simple combinations of masonry piers and arches, and a real structure is discussed using DEM. It is further demonstrated that this structural analysis tool allows obtaining excellent results in the description of the nonlinear behavior of masonry structures.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.