• Title/Summary/Keyword: engineering behavior

Search Result 20,167, Processing Time 0.043 seconds

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

Cyclic behavior of connection between footing and concrete-infilled composite PHC pile

  • Bang, Jin-Wook;Hyun, Jung Hwan;Lee, Bang Yeon;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.741-754
    • /
    • 2014
  • The conventional PHC pile-footing connection is the weak part because the surface area and stiffness are sharply changed. The Composite PHC pile reinforced with the transverse shear reinforcing bars and infilled-concrete, hereafter ICP pile, has been developed for improving the flexural and shear performance. This paper investigates the cyclic behavior and performance of the ICP pile-footing connection. To investigate the behavior of the connection, one PHC and two ICP specimens were manufactured and then a series of cyclic loading tests were performed. From the test results, it was found that the ICP pile-footing connection exhibited higher cyclic behavior and connection performance compared to the conventional PHC pile-footing connection in terms of ductility ratio, stiffness degradation and energy dissipation capacity.

Mechanical behavior of recycled fine aggregate concrete after high temperature

  • Liang, Jiong-Feng;Wang, En;He, Chun-Feng;Hu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.343-348
    • /
    • 2018
  • This paper reports mechanical behavior of recycled fine aggregate concretes after high temperatures. It is found that compressive strength of recycled fine aggregate concretes decline significantly as the temperature rises. The elastic modulus of recycled fine aggregate concretes decreases with the increase in temperature, and the decrease is much quicker than the decrease in compressive strength. The split tensile strength of recycled fine aggregate concrete decrease as the temperature rises. Through the regression analysis, the relationship of the mechanical behavior with temperature are proposed, including the compressive behavior, elastic modulus and split tensile strength, which are fitting the test data.

Seismic shear behavior of rectangular hollow bridge columns

  • Mo, Y.L.;Jeng, Chyuan-Hwan;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.429-448
    • /
    • 2001
  • An analytical model incorporating bending and shear behavior is presented to predict the lateral loading characteristic for rectangular hollow columns. The moment-curvature relationship for the rectangular hollow sections of a column is firstly determined. Then the nonlinear lateral load-displacement relationship for the hollow column can be obtained accordingly. In this model, thirteen constitutive laws for confined concrete and five approaches to estimate the shear capacity are used. A series of tests on 12 model hollow columns aimed at the seismic shear behavior are reported, and the test data are compared to the analytical results. It is found that the analytical model reflects the experimental results rather closely.

Seismic behavior factors of buckling-restrained braced frames

  • Kim, Jinkoo;Park, Junhee;Kim, Sang-Dae
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.261-284
    • /
    • 2009
  • The seismic behavior of a framed structure with chevron-type buckling restrained braces was investigated and their behavior factors, such as overstrength, ductility, and response modification factors, were evaluated. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2003, the AISC LRFD and the AISC Seismic Provisions. Nonlinear static pushover analyses using two different loading patterns and incremental dynamic analysis using 20 earthquake records were carried out to compute behavior factors. Time history analyses were also conducted with another 20 earthquakes to obtain dynamic responses. According to the analysis results, the response modification factors turned out to be larger than what is proposed in the provision in low-rise structures, and a little smaller than the code-values in the medium-rise structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

Step Response of RF Plasma in Carbon Tetrafluoride($CF_4$)

  • So, Soon-Youl;Akinori Oda;Hirotake Sugawara;Yosuke Sakai
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.930-933
    • /
    • 2000
  • To understand the behavior of electron, ions and radicals on radio-frequency non-equilibrium plasma, it is necessary to know the basic information about its fundamental properties and reactions. Especially, the transient response of radio-frequency plasma has an important means of controlling selective etch rates and investigating the stability of a plasma chemical process. In this paper, we present the results of periodic steady-state behavior and transient behavior carbon Tetrafluoride(CF$_4$) discharge at 0.2 Torr in a 2 cm gap parallel-plate. After the number densities of charged particles became steady-state, the applied voltage was increased or decreased in an instant and the transient behavior of charged particles and radicals was investigated from one steady-state to the next steady state.

  • PDF

A Study on temperature behavior of pulsating heat pipe with different diameter in evaporator (증발부 내경 변화에 따른 진동형 히트파이프의 온도 거동에 관한 연구)

  • Kim, Jihoon;Park, Chulwoo;Shah, Syed Abdullah;Kim, Daejoong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 2019
  • In this study, the temperature behavior of Pulsating Heat Pipe (PHP) according to the diameter change were studied by limiting the diameter change to only the evaporator. To investigate operation of PHP in various heat input, heat input power was increased from 10 to 120 W. The results show operation can be divided into 3 regimes by temperature behavior. Thermal resistance was increased before start-up and decreased with increasing heat input. At 110 W heat input, thermal conductivity of 2 mm PHP was 8 .times higher compare to thermal conductivity of copper. Further, to investigate details of temperature behavior in higher heat input, FFT analysis was conducted. Based on the results, when the deviation of peak frequency in each section is lowest, the thermal resistance has lowest value.

Effects of Communication Company's Safety Management System on Workers' Safety Consciousness and Safety Observance Behavior

  • Byun, Kwang-Seup;Jung, JIn-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.120-129
    • /
    • 2021
  • In this study, the effect of a telecommunication company's safety management system on workers' safety awareness and safety behavior was empirically verified. The main findings are as follows: First, among the factors of the telecommunication company's safety management system, the management supervisor's capability and level of industrial accident investigations were found to have a significant positive effect on workers' safety awareness. Second, workers' safety awareness was observed to exert a significant positive effect on their safety behavior. Third, among the factors of the telecommunication company's safety management system, the management supervisor's capability and industrial accident investigations were found to have a significant positive effect on the safety behavior of workers. Fourth, although the telecommunications safety management system factors, such as management supervisors' capability and industrial accident investigations, were found to have a positive effect on workers' safety awareness, they had no mediated effect on workers' safety behavior through safety awareness.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE (곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구)

  • Lee, Geonkang;Hur, Nahmkeon;Son, Gihun
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.