• 제목/요약/키워드: engine shafting

검색결과 86건 처리시간 0.022초

PTO시스템과 비선형 탄성커플링을 갖는 어선용 기관축계의 비틀림 진동해석 (Torsional Vibration Analysis for Engine Shafting of Fishing Vessel with PTO System and Nonlinear Elastic Coupling)

  • 최명수;김원래;문덕홍
    • 수산해양기술연구
    • /
    • 제40권3호
    • /
    • pp.232-243
    • /
    • 2004
  • After studying the composition about the torsional shafting of main engine for fishing vessel with Power Take Off (PTO) System, the authors made a computer program using the transfer stiffness coefficient method (TSCM) for analyzing torsional vibration about the shafting with PTO system and nonlinear elastic coupling. The torsional shafting of main engine was separated by 3 types according to the connecting. The torsional shafting of main engine was separated by 3 types according to the connecting condition of main engine with propeller or the PTO system or both of them. In this paper, the change of natural frequencies and natural modes according to connecting condition of torsional shafting and nonlinear elastic coupling were analyzed. The accuracy of the TSCM was confirmed by comparing with the computational results of the Finite Element Method.

디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동 (Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator)

  • 이돈출
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

기계적 임피던스법에 의한 박용 디젤기관 추진축계의 강제감쇠 비틀림 진동의 계산에 관한 연구 (A study on the calculation of forced torsional vibration with damping for the marine diesel engine shafting by the mechanical impedance method)

  • 김정열;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.307-316
    • /
    • 1985
  • Nowadays, the natural frequencies and their relative amplitudes of torsional vibration for the marine diesel engine shafting are usually calculated by the Holzer method and also its resonant amplitudes are estimated by the energy method, that is, by equating the exciting energy to the damping one. Therefore, the forced vibration amplitudes out of the resonant points can not be calculated by the above-mentioned method. And so, the reasonable barred-ranges of torsional vibration can not be set and also the flank of resonant point which locates near the calculation limit can not be estimated. For such problems, the equation of forced vibration with damping must be solved directly and these results can be utilized to derive the synthesized torsional vibration of the marine diesel engine propulsion shafting. In this study, the equation of forced vibration with damping for the marine diesel engine propulsion shafting is derived and its steady-state vibration is calculated by the mechanical impedance method. For numerical calculation of the actual propulsion shafting a computer program is developed. In order to prove the reliability of this program, an actual ship's propulsion shafting whose torsional vibration was measured is analyzed and the calculated propulsion shafting whose torsional vibration was measured is analyzed and the calculated results are compared with the measured ones. And also, they are compared with the calculated results which were obtained by the modal analysis.

  • PDF

디젤기관 추진축계의 설계를 위한 비틀림 진동해석 전산프로그램의 개발 (Development of Computer Program of Torsional Vibration Analysis for Design of Diesel Engine Propulsion Shafting)

  • 최명수;문덕홍;심재문
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.23-28
    • /
    • 2003
  • It is very important to analyze the torsional vibration for the propulsion shafting of ship. The authors have developed the transfer stiffness coefficient method(TSCM) as a vibration analysis algorithm. The concept of the TSCM is based on the successive transfer of stiffness coefficient. The effectiveness of the TSCM was verified through many applications. In this paper, the TSCM is applied to the torsional free vibration analysis for the propulsion shafting of an actual shin with a diesel engine. In order to calculate the additional torsional stresses of the propulsion shafting the torsional forced vibration for the shafting is analyzed by using both the modal analysis method and the results of the torsional free vibration analysis by the TSCM. The accuracy of the present method is confirmed by comparing with the vibration analysis results of engine maker.

  • PDF

고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성 (Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling)

  • 이돈출;김상환;유정대
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

전달강성계수법에 의한 왕복 기계 축계의 비틀림진동 응력해석 (Torsional Vibration Stress Analysis for Shafting in Reciprocating Machine by Transfer Stiffness Coefficient Method)

  • 최명수
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.749-756
    • /
    • 2004
  • While designing shafting in reciprocating machines with internal combustion engines which derive generators, pumps, and vehicles, it is very important to calculate the additional stress of shafting by torsional vibration. In this paper, the transfer stiffness coefficient method which is based on the successive transfer of stiffness coefficient was applied to the calculation of the additional stress of shafting in reciprocating machine by torsional vibration. In order to confirm the effectiveness of the present method, a propulsion shafting with a diesel engine in a vessel was considered as the computational example of shafting in reciprocating machine. The results calculated by the present method were compared with those of the modal analysis method, the mechanical impedance method, and free vibration analysis.

디젤기관의 토크 하모닉스에 대한 이론적 해석 (A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines)

  • 이용진;장민오;김의간;전효중
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF

주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석 (Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain)

  • 김상환;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

기계적 임피던스법에 의한 박용디젤기관 추진축계의 합성비틀림진동 계산에 관한 연구 (A study on the calculation of synthesized torsional vibration for the marine diesel engine shafting by the mechanical impedance method)

  • 박용남;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.146-155
    • /
    • 1986
  • Until recently, the calculation of torsional vibration for the marine diesel engine shafting has been performed only for vibratory stresses of resonant points and vibratory stresses for other engine speeds are determined by the estimation. With the advent of energy-saving engines which have a long stroke and a small number of cylinders, the first major critical torsional vibration of the propulsion shaft appears ordinarily near the MCR speed of engine and the flank of its vibratory stress exceeds now and then the limit stress defined by the rules of Classification Society. In order to know the above condition in the design stage of propulsion shafting, it is necessary to calculate the forced torsional vibration with the damping of propulsion shafting for all orders and to synthesize its calculated results according to their phase angles. In this study, the forced torsional vibrations with the damping of propulsion shafting are calculated for several orders by mechanical impedance method, and their results are synthesized. A computer program for above calculations are developed and some test-runs of the developed program are performed for propulsion shaftings of actual ships. The results of calculations are compared with measured values and also with those of the modal analysis method. They show fairly good agreements and the developed program is checked up on its reliability.

  • PDF

고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선 (Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling)

  • 이돈출
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.