• 제목/요약/키워드: engine oil resistance

검색결과 35건 처리시간 0.019초

용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가 (Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode)

  • 문경만;김윤해;이명훈;백태실;김진경
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

동시에 측정된 두 열선센서의 저항변화 신호를 이용한 나노유체와 기본유체의 열전도율 비교장치 (Apparatus for Comparing Thermal Conductivity of Nanofluids and Base Fluid Using Simultaneously Measured Resistance Variation Signals from Two Hot Wire Sensors)

  • 이신표
    • 대한기계학회논문집B
    • /
    • 제39권1호
    • /
    • pp.29-36
    • /
    • 2015
  • 나노유체 개발 초기단계에서 기본유체 대비 제조한 나노유체의 열전도율이 얼마나 상승했는지 그 값을 정확히 비교하는 것이 중요하다. 지금까지는 기본유체와 나노유체의 열전도율을 비정상열선법으로 별도 측정한 후 수치적으로 나누어 비교하는 단순한 방법을 사용하였다. 이 때 두 유체의 열전도율 측정이 동시에 이루어지지 않고 절대측정방법의 특성상 측정시스템의 관련 수치들이 정확히 사용되지 않으면 개별 열전도율에 나타나는 오차를 피할 수 없다. 본 연구에서는 비교대상인 두 유체를 동시에 사용하여 열전도율 비를 상대적으로 측정하는 새로운 방법을 제시하였다. 기존 비정상열선법 회로를 변형한 측정회로와 데이터 처리과정을 자세히 설명하였고 엔진오일과 글리세린을 이용한 검증실험을 통하여 제시된 방법의 타당성을 검토하였다.

전기 자동차 성능 평가를 위한 도심 주행 모드 개발 Part I : 주행 모드 개발 (Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part I : Development of Driving Cycle)

  • 양성모;정낙탁;김광섭;최수빈;;김현수;서명원
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.117-126
    • /
    • 2014
  • Recently, due to various environmental problems such as global warming, increasing of international oil prices and exhaustion of resource, a paradigm of world automobile market is rapidly changing from vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), PHEV (Plug-in Hybrid electric Vehicle) and FCEV (Fuel Cell Electric Vehicle). There are many driving cycles for performance evaluation of conventional vehicles. However there is a lack of researches on driving cycle for EV. This study is composed of part 1 and part 2. In this paper part 1, in order to develop urban driving cycle for performance evaluation of electric vehicles, Gwacheon-city patrol route of police patrol car was selected. Actual driving test was performed using EV. The driving data such as velocity, time, GPS information etc. were recorded. GUDC-EV (Gwacheon-city Urban Driving Cycle for Electric Vehicles) including road gradient was developed through the results of analyzing recorded data. Reliability of the driving cycle development method was substantiated through comparison of electricity performance. In the second part of this study, the developed driving cycle was compared to simulation result of the existing urban driving cycle. Verification of the developed driving cycle for EV performance evaluation was described.

장기 저장연료의 열안정성 및 연료접촉 고무오링의 수명예측 연구 (A Study on the Thermal Stability of Long-Term Fuel Storage and Lifetime Estimation of Rubber O-ring in Contacted with Fuel)

  • 정근우;홍진숙;김영운;한정식;정병훈;권태수;서동욱;성민준;권영일
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.197-207
    • /
    • 2018
  • Thermal deterioration of fuel due to long-term storage influences engine performance and causes malfunctions. Fuel stability is usually evaluated via heat resistance and thermal stability during a brief heat shock at high temperature; storage stability in this scenario means that there is very little change in the quality of the fuel during long-term storage. In addition, rubber-based products such as oil seals, O-rings, and rubber hoses can influence the quality of the fuel. When these rubber products are in contact with fuel, they can swell, mechanically weaken, and occasionally crack, thus leaking low molar weight rubber and additives including plasticizer and antioxidant into the fuel to degrade its properties and shorten its useful lifetime. This study determines the thermal stabilities of three kinds of synthetic fuels by evaluating their low temperature kinematic viscosities, chemical composition changes via GC analyses, gross heat of combustion, and color changes. We evaluate the compression set of O-rings by immersing one NBR and two FKM rubber O-rings in the three synthetic fuel samples in airtight containers at variable storage temperatures for six months; from this, we estimate the lifetimes of the O-rings using the Power law model. There were very little changes in the chemical compositions and gross heat of combustion after six months of the experiment. The lifetimes are thus dependent on the materials of the rubber products, and in particular, the FKM O-ring was calculated to have a theoretical lifetime of 200 to 5,700 years. These results indicate that the synthetic fuels maintain their physical properties even after long-term storage at high temperatures, and the FKM O-ring is suitable for long-term sealing of these fuels.

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF