• Title/Summary/Keyword: engine modeling

Search Result 577, Processing Time 0.022 seconds

Architecture Modeling and Performance Analysis of Event Rule Engine (이벤트 파싱 엔진의 구조 설계와 성능 분석)

  • 윤태웅;민덕기
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.51-57
    • /
    • 2003
  • In operating distributed systems, proactive management is one of the major concerns for better quality of service and future capacity planning. In order to handle this management problem effectively, it is necessary to analyze performances of the distributed system and events generated by components in the system. This paper provides a rule-based event parsing engine for proactive management. Our event parsing engine uses object hooking-based and event-token approaches. The object hooking-based approach prepares new conditions and actions in Java classes and allows dynamically exchange them as hook objects in run time. The event-token approach allows the event parsing engine consider a proper sequence and relationship among events as an event token to trigger an action. We analyze the performance of our event parsing engine with two different implementations of rule structure; one is table-based and the other is tree-based.

  • PDF

Analysis of Exciting Forces for In-Line 4 Cylinders Engine (직렬 4기통 엔진의 가진력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

Design and Implementation of B2Bi Collaboration Workflow System for Efficient Business Process Management based on J2EE (효율적인 비즈니스 프로세스 관리를 위한 J2EE 기반 B2Bi 협업 워크플로우 시스템 설계 및 구현)

  • Lee, Chang-Mog;Chang, Ok-Bae
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.97-106
    • /
    • 2007
  • In this paper, the business process was easily modeled by distinguishing between the business process and work logic. Based on this model, B2Bi collaboration Workflow modeling tool, which facilitates collaboration, was designed and implemented. The collaboration workflow modeling tool consists of 3 components; business process modeling tool, execution engine and monitoring tool. First, a business process modeling tool is used to build a process map that reflects the business logic of an application in a quick and accurate manner. Second an execution engine provides a real-time execution environment for business process instance. Third, a monitoring tool provides a real-time monitoring function for the business process that is in operation at the time. In addition to this, it supports flexibility and expandability based on XML and J2EE for the linkage with the legacy system that was used previously, and suggests a solution for a new corporate strategy and operation.

Numerical Analysis about Optimal Conditions of GDICI Engine Operation using Intake Preheating (흡기가열을 이용한 가솔린압축착화 엔진의 최적구동조건에 관한 수치적 연구)

  • Choi, Mingi;Cha, Junepyo;Kwon, Seokjoo;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.105-106
    • /
    • 2012
  • This study is numerical analysis about optimal conditions of GDICI (gasoline direct injection compression ignition) engine operation using intake preheating. Numerical modeling was performed by using the KIVA-3V Release2 code integrated Chemkin chemistry solver II. For validation of numerical model, experiments were performed on a single-cylinder engine. Throughout the numerical simulations under variable conditions, the ranges of optimal conditions were found.

  • PDF

A Study on the Combustion Characteristics of Spark Ignition Engine by the Thermodynamic Properties Model (열역학적 물성치 모델에 의한 스파크 점화기관의 연소특성에 관한 연구)

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.75-80
    • /
    • 2014
  • The past several years have seen a substantial growth in mathematical modeling activities whose interests are to describe the performance, efficiency and emissions characteristics of various types of internal combustion engines. The key element in these simulations of various aspects of engine operation is the model of the engine combustion process. Combustion models are then classified into three categories: zero-dimensional, quasi-dimensional and multidimensional models. zero-dimensional models are built around the first law of thermodynamics, and time is the only independent variable. This paper presents a introduction to the combustion characteristics of a spark ignition combustion modeling by zero-dimensional model.

ANALYSIS OF GAS-DYNAMIC EFFECTS IN COMPACT EXHAUST SYSTEMS OF SMALL TWO-STROKE ENGINES

  • Galindo, J.;Serrano, J.R.;Climent, H.;Tiseira, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • This article describes a methodology based on experiments and 1D modeling work related to the exhaust system analysis of a small two-stroke engine. The primary goal of this work was to understand how the design criteria of a compact exhaust system influenced the exhaust port pressure, since its evolution controls not only engine performance but also exhaust emissions. On the experimental side, a fully instrumented 50cc two-stroke engine was used to check the behavior of three different exhaust systems. A problem related to instantaneous pressure measurements in unsteady, hot flow was detected and solved during the study. To build the 1D model of the three exhaust systems, experimental information on the steady flow and the impulse test rigs was obtained under controlled conditions in specific facilities. Accurate comparisons between measured and calculated exhaust port instantaneous pressures were obtained from the following different exhaust system configurations: a straight duct, a tapered pipe and the three compact exhaust systems. The last step in the method used this model to analyze the pressure waves inside the exhaust system and detect the influence of the geometric parameters. The results should lead to improvements in the design process of complex compact exhaust systems in two-stroke engines.

Multidisciplinary Design Optimization of Engine Mount with Considering Driveline (구동계를 고려한 엔진 마운트의 다분야 통합 최적설계)

  • 서명원;심문보;김문성;홍석길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

Development of Combustion Model for Engine Control Algorithm Design (엔진제어 알고리즘 설계를 위한 연소모델 개발)

  • Park, Young-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.26-36
    • /
    • 2010
  • This paper provides a description of the combustion model to obtain an accurate dynamic engine phenomena that satisfies real-time simulation for model-based engine control. The combustion chamber is modeled as a storage device for mass and energy. The combustion process is modeled in terms of a two-zone model for the burned and unburned gas fractions. The mass fraction burnt is modeled in terms of a Wiebe function. The instantaneous net engine torque is calculated from the engine speed and the instantaneous piston work. The modeling accuracy has been tested with a cylinder pressure data on a test bench and also the ability of real-time simulation has been checked. The results show that combustion model yields sufficiently good performance for the model-based control logic design. However the influence factors effected on model accuracy are some room for improvement.

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.

A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis (선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구)

  • Kim, Sookyum;Woo, Seungchul;Kim, Woong Il;Park, Sangki;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.