• Title/Summary/Keyword: engine

Search Result 12,462, Processing Time 0.04 seconds

Design, Fabrication And Test of A Stiring Engine for Agriculture

  • Suh, Sang-Ryong;Kim, Jae-Young-
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.267-276
    • /
    • 1993
  • A kinetmatic stirling engine with a domed heater was designed, fabricated and test. In designing and fabrication of the engine various problems were confronted and solved. Among various parts of the engine, cooler and main seal needed sophisticated techniques to fabricated in order to prevent leakage of working gas from the parts and to ensure their proper functions in the engine. The engine had a series of experiment at various working gas pressure, heater temperatures and engine speeds to evaluate its performance. Indicated and brake power outputs and indicated and brake thermal efficiencies were determined from the experimental data. The engine resulted a little inferior performance to that of the GPU-3 engine of which performance was well reported . Several recommendations were made to improve the performance of the engine during the evaluation of its performance.

  • PDF

A Study on the Optimum Design Parameters of the Thermostat for Coolant Temperature Control of an Automotive Engine (자동차용 기관의 냉각수 온도조절을 위한 서머스탯의 최적설계 변수설정에 관한 연구)

  • 박경석;신진식;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • It is widely recognized that exhaust emissions, fuel economy and engine torque are affected by engine temperature, and logic would suggest that a cooling system offering a better compromise of engine temperature would improve both overall engine performance and economy. Author measured coolant temperature of some parts and flow rate which are necessary to heat transfer in a engine. And Author determined parameters necessary for the optimum design of a thermostat to keep the best engine performance ; determined the optimum operating temperature of electric cooling fan. A summary of this study is followed. 1. Study of the effects of cooling condition to combustion character in a engine. 2. Analyze of heat transfer surrounding engine cylinders. 3. Study of the effects of cooling character to engine heat rejection, determination of the optimum collant temperature for keeping the optimum engine performance and determination of the optimum design of a thermostat for keeping that temperature.

  • PDF

정량적 엔진평가에 의한 엔진 윤활유 평가기술

  • 전상명
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.8-15
    • /
    • 1997
  • It is very difficult to express the state of a tested engine objectively concerning the malfunction, failure and wear of an engine. The general method of engine evaluation is to express evaluator's opinion for the engine state after testing. However, these methods is only subjective evaluation because test engineers, designers, and evaluators does not easily coincide in opinion. Therefore, in this article, the method of engine rating are introduced in order to represent the qualitative trends into quantitative value. The purpose of Engine Rating is to assign a quantified value to the tribology state of a tested engines. Originally, this Engine Rating method have been used to evaluate the performance of engine oil quantitavely. Using this method, we can predict the proper interval of engine oil change due to its objectivity. So, we can prevent the frequent change of engine oil and protect the environmental contamination. Furthermore, this method can be used to tell the general state of a tested engine after finishing engine durability tests. A single merit scale is used to evaluate numerically the state of cleanliness and the mechanical condition. Generally, a part which is absolutely clean or shows no wear, is rated merit 10. A part which is absolutely dirty or very worn, is rated merit 0.

Development of an Engine Simulator for Optimal Control System Implementation of a Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Cha, Young-Bum;Koo, Bon-Min;Song, Do-Ho;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • In advanced countries, a gas turbine engine is developed to use in aircraft, vessels, and target weapons. Our nation also passed the level of producing engine components and now, we are developing small-sized gas turbine engine. The most important point of the gas turbine engine, the engine control technique, is evaded by the advanced nations. This document contains the research about the development of the gas turbine engine simulator. The simulator presented in this document has a mathematical engine model based on a capacity data of the gas turbine engine to advance the engine simulator. Through this process, it eases the development of the gas turbine engine control algorithm and helps to check the engine controller function. In this simulator, the engine sensor signal conversion board is designed, so the engine model shows like a real sensor signal during the simulation. Also, this paper contrasts the actual engine test with the simulation results to verify the performance.

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.

A Study on the Performance of Diesel Automobile Engine with Ultrasonic Fule Supply System(III) (On the case of Turbo-charging Diesel Engine) (초음파 연료공급장치용 디젤자동차의 성능 향상에 관한 연구(III) (과급 디젤기관에 대하여))

  • 최두석;이흥영;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.12-18
    • /
    • 1995
  • To improve the performance of diesel automobile engine, we designed new fuel supply system named ultrasonic fuel supply system. The performance test of diesel automobile engine carried out to examine possibility of practical use of ultrasonic fuel supply system to test engine. This paper deals with the comparative results of performance test of diesel automobile engine in terms of smoke, HC, SFC, PS, thermal, efficiency, torque. Following are obtained result. 1) In naturally aspirated diesel engine, when we use ultrasonic fuel supply system output, fuel consumptions are improved and exhaust gas reduced significantly. 2) In turbo-charging diesel engine both using of ultrasonic fuel supply system and using of conventional injector, engine performance and exhaust gas temperature are almost constant. 3) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, NOx are emitted approximately 3.5% higher than total average. 4) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, smoke and CO are 17% and 11.8% improved respectively.

  • PDF

Present Status and Further Development of Performances of Industrial Gas Turbine Engine Turbogreen 1200

  • Min, Daiki;Bograd, Alexander M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.191-197
    • /
    • 1998
  • The recent results of the engine development performed in this you on Turbogreen 1200, the first industrial gas turbine engine developed in Korea, are presented. In order to improve the engine performance and structural stability from the first prototype engine, several variants of the engine and major components such as combustor and rotor assembly have been developed and tested. This paper shows these results especially focused on the engine test and performance analysis, in which test system, instrumentation and data processing are discussed as well. The engine performance and its trend give relatively good coincidence with the design ones. At design power of 1.2MW, the thermal efficiency of the engine is estimated over $25\%$ which is below the design target of $27.2\%$. This gap of efficiency is caused mainly by large tip clearance between turbine blades and casing. Considering high design efficiency superior to those of other competitive engines in this power class, Turbogreen 1200 would have a strong competition in its performance if the design efficiency is achieved by further developments such as tip clearance control, which are very possible and natural in final mass production of the developed gas turbine engine.

  • PDF

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

The ralationship between apex seal breakage and engine detonation in a wankel engine (Wankel 엔진의 에이펙스 시일 파손과 엔진 이상폭발과의 관계)

  • 김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.48-54
    • /
    • 1985
  • One of the most probable reason of the apex seal damage in IR-2500 industrial Wankel (rotary) engine was believed to be the engine detonation. Both analytical and experimental studies were made with a view th find out engine detonation pressure. The stagnation detonation pressure $p_{03}$' was estimated based on the data from IR-2500 engine detonation tests, such as engine firing pressure, state of fresh charge at BDC and polytropic compression exponent. The estimated stagnation detonation pressure for the natural gas fueled IR-2500 engine was in excess of 3,700 psia. With natural gas liquid added to the natural gas the octane value of the fuel was lowered, thus, making the engine more prone to detonate. The estimated detonation pressure for the case with the mixed fuel was about 3,400 psia which was sufficiently high to break the apex seal. The subsequent engine lab tests performed on two identical engines with sole difference in the apex seal thickness between the two engines proved that the engine knock, in fact, was the villain of the apex seal failure.ilure.

  • PDF

Optimal Mounting System for Active Engine Mount (능동 최적 마운팅 시스템 개발)

  • Kim, Jeong-Hoon;Kim, Jae-San;Kim, Jang-Ho;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.276-277
    • /
    • 2008
  • Recently active engine mounting system is developed for improvement of vehicle NVH performance which follow the development of high efficient powertrain and lightweight vehicle body. The most important part in the development of active engine mounting system is implementation of optimal engine mounting system to apply active engine mount. In this paper engine mounting systems including active engine mount are considered and their performance is predicted using engine mounting system analysis tool. Then optimal mounting system for active engine mount is proposed.

  • PDF