• Title/Summary/Keyword: energy-efficient communication

Search Result 699, Processing Time 0.024 seconds

Energy Efficient Routing Protocol for Mobile Wireless Sensor Networks (모바일 WSN을 위한 에너지 효율적인 경로배정 프로토콜)

  • Yoo, Jinho;Choi, Sung-Gi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.405-411
    • /
    • 2015
  • In this paper, we propose routing protocol for mobile wireless sensor networks with a mobile sink in cluster configuration. The proposed protocol extends LEACH-ME by introducing a mobile sink. The mobile sink moves to the cluster head with the highest number of member nodes to collect sensed data from cluster heads within its vicinity, which results in reducing energy consumption in forwarding packets to the sink. The simulation results show that the proposed protocol outperform LEACH-ME in terms of energy efficiency.

The Energy Efficient for Wireless Sensor Network Using The Base Station Location

  • Baral, Shiv Raj;Song, Young-Il;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Energy constraints of wireless sensor networks are an important challenge. Data Transmission requires energy. Distance between origin and destination has an important role in energy consumption. In addition, the location of base station has a large impact on energy consumption and a specific method not proposed for it. In addition, a obtain model for location of base station proposed. Also a model for distributed clustering is presented by cluster heads. Eventually, a combination of discussed ideas is proposed to improve the energy consumption. The proposed ideas have been implemented over the LEACH-C protocol. Evaluation results show that the proposed methods have a better performance in energy consumption and lifetime of the network in comparison with similar methods.

Symptoms-Based Power-Efficient Communication Scheme in WBSN

  • Sasi, Juniven Isin D.;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • It is practical nowadays to automate data recording in order to prevent loss and tampering of records. There are existing technologies that satisfy this needs and one of them is wireless sensor networks (WSN). Wireless body sensor networks (WBSN) are wireless networks and information-processing systems which are deployed to monitor medical condition of patients. In terms of performance, WBSNs are restricted by energy, and communication between nodes. In this paper, we focused in improving the performance of communication to achieve less energy consumption and to save power. The main idea of this paper is to prioritize nodes that exhibit a sudden change of vital signs that could put the patient at risk. Cluster head is the main focus of this study in order to be effective; its main role is to check the sent data of the patient that exceeds threshold then transfer to the sink node. The proposed scheme implemented added a time-based protocol to sleep/wakeup mechanism for the sensor nodes. We seek to achieve a low energy consumption and significant throughput in this study.

Energy-Sharing Scheme of the Sensor System for the efficient use of Solar Power (태양 에너지의 효율적 활용을 위한 센서 시스템의 에너지 공유 기법)

  • Noh, Dong-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2569-2574
    • /
    • 2010
  • In this paper, we introduce an efficient energy management using a notion of virtual energy system for shared solar-powered sensor network. Virtual energy system is an abstraction that allows sensor network applications on a node to reserve their own fractions of the shared solar cell and the shared rechargeable battery, hence achieving logically partition of a shared renewable power source. Our results show that our design and implementation are reliable, lightweight and efficient, allowing proper isolation of energy consumption among applications.

Algorithm of Holding Time Control Using Delay-Tolerant Packet for Energy-Efficient Transmission (에너지 효율적인 전송을 위한 지연 허용 패킷의 유지시간 제어 알고리즘)

  • Ryu, Seung Min;Choi, Won Seok;Choi, Seong Gon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • This paper proposes an energy transmission method to maximize energy efficiency of a based station. This method makes use of classification of service type to solve an inefficient use of transmission power, which is from exponential relationship between the legacy data throughput and transmission power. The proposed one is a way to find the most energy-efficiency points with the transmitted optimal amount of data on users in a base station of wireless network environment. For this, we propose EETA (Energy-Efficient Transmission Algorithm) which can control the amount of data and the holding time at the base station. As a result, the proposed method can improve the energy efficiency of about 10% compared to the legacy base station.

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.

An energy-efficient technique for mobile-wireless-sensor-network-based IoT

  • Singla, Jatin;Mahajan, Rita;Bagai, Deepak
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Wireless sensor networks (WSNs) are one of the basic building blocks of Internet of Things (IoT) systems. However, the wireless sensing nodes in WSNs suffer from energy constraint issues because the replacement/recharging of the batteries of the nodes tends to be difficult. Furthermore, a number of realistic IoT scenarios, such as habitat and battlefield monitoring, contain mobile sensing elements, which makes the energy issues more critical. This research paper focuses on realistic WSN scenarios that involve mobile sensing elements with the aim of mitigating the attendant energy constraint issues using the concept of radio-frequency (RF) energy extraction. The proposed technique incorporates a cluster head election workflow for WSNs that includes mobile sensing elements capable of RF energy harvesting. The extensive simulation analysis demonstrated the higher efficacy of the proposed technique compared with the existing techniques in terms of residual energy, number of functional nodes, and network lifetime, with approximately 50% of the nodes found to be functional at the 4000th, 5000th, and 6000th rounds for the proposed technique with initial energies of 0.25, 0.5 and 1 J, respectively.

Optimal Packet Length with Energy Efficiency for Sensor Networks (센서 네트워크상에서 에너지 효율성을 고려한 최적 패킷 길이)

  • Choi Sung-Hye;Joe InWhee
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.111-114
    • /
    • 2004
  • Sensor networks are deployed with a limited energy source. Thus, energy efficient design can be challenging. This paper has been studied optimal packet length with energy efficiency for sensor networks. And using Power Management can not improve energy efficiency. Power Management is turning off transceiver when transceiver is idle statue. We show that BCH code for error control can improve energy efficiency better than Convolutional code.

  • PDF

A Hybrid PCS Considering on a Residential Energy Storage System (가정용 ESS를 고려한 하이브리드 PCS)

  • Jung, Doo-Yong;Kim, Ji-Hwan;Choi, Seong-Chon;Lee, Su-Won;Han, Hee-Min;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • In recent years, technology for storing a preliminary power or a surplus of photovoltaic energy is required. This technique, as well as store a preliminary energy and improve the reliability of the gird safety. This system can plan a efficient power generation through the flexibility of the power supply from the perspective of not only provider but also user. Accordingly, the realization of the smart grid can be expected. This paper proposes a hybrid PCS using a photovoltaic and a lithium-polymer battery with the characteristics of high density energy. The main energy source of a hybrid PCS is a photovoltaic, grid and the auxiliary energy source is a lithium-polymer battery. The operation of a proposed system in this paper is verified with simulation and experimental results.