• Title/Summary/Keyword: energy-dispersive x-ray spectroscopy (eds)

Search Result 301, Processing Time 0.031 seconds

Characteristics of Adhesive Disks in Parthenocissus tricuspidata during Attachment (착생에 따른 담쟁이덩굴 흡착근의 부착 특성)

  • Lee, Myung-Hui;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • Parthenocissus tricuspidata is an epiphyte that lacks a main axial stem, but develops adhesive disks along the stem for climbing support. In this study, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were utilized to examine the brick wall surface and the adhesive disks of P. tricuspidata that attached to the surface successfully. The study was mainly focused the outermost layers of both structures before and after adhesion to find out whether there has been some structural and/or physical interactions between the two. The adhesive disks adhered firmly to the brick wall by secreting adhesive materials that help them for a tight attachment to the surface. The rough wall surface appeared facilitating better attachment of the adhesive disks by infiltrating the materials into those spaces leading to some degree of interactions at the interface. EDS analysis on the outermost layers of the adhesive disks that were separated from the substrates was also consistent with the SEM data on the interaction between the adhesive disks and the substrate surface. EDS analysis of the brick wall surface and the adhesive disks demonstrated similar elements of O, Si, Fe, Al, K, Mg, and Na in their components.

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

Effect of Silane Coupling Agent on Adhesion Properties between Hydrophobic UV-curable Urethane Acrylate and Acrylic PSA (소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향)

  • Noh, Jieun;Byeon, Minseon;Cho, Tae Yeun;Ham, Dong Seok;Cho, Seong-Keun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.230-236
    • /
    • 2020
  • In this study, an adhesive tape with water and impact resistance for mobile devices was developed using a UV-curable urethane acrylate based polymer as a substrate. The substrate fabricated by UV-curable materials shows hydrophobicity and poor wettability, which significantly deteriorates the interface-adhesions between the substrate and acrylic adhesive. In order to improve the interface adhesion, 3-glycidoxy-propyl trimethoxysilane (GPTMS), a silane coupling agent having epoxy functional groups, was selected and incorporated into UV-curable urethane acrylate based polymer resins in various contents. The changes of the chemical composition according to the contents of GPTMS was studied with Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) to know the surface bonding properties. Also mechanical properties of the substrate were characterized by tensile strength, gel fraction and water contact angle measurements. The peel strengths at 180° and 90° were measured to compare the adhesion between the substrate and adhesive according to the silane coupling agent contents. The mechanical strength of the urethane acrylate adhesive tape decreased as the silane coupling agent increased, but the adhesion between the substrate and adhesives increased remarkably at an appropriate content of 0.5~1 wt%.

Adhesion reliability of flexible copper clad laminate under constant temperature and humidity condition by thickness of Ni/Cr seed layer (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Yoon, Jae-Hyun;Choi, Don-Hyun;Kim, Yong-Il;Jung, Seong-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.75-75
    • /
    • 2009
  • 연성회로기판은 일반적으로 절연체를 이루는 폴리이미드와 전도체를 이루는 구리로 구성되어 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 기계적 특성, 공정성 등의 장점으로 인해 연성회로기판의 절연체로서 제안되었지만 전도체를 이루는 구리와의 접합 특성이 우수하지 않기 때문에 많은 연구가 현재까지 진행되고 있고, 그 결과 연성회로기판의 접합 특성에 많은 개선이 이루어짐과 동시에 다양한 공정 방법이 제안되고 있다. 하지만 고온다습한 환경에서 사용될 경우 폴리이미드의 높은 흡습성과, 구리와 seed layer의 산화 문제로 인해 접합 특성이 저하된다는 단점 또한 가지고 있다. 따라서 본 연구를 통해 고온다습한 조건하에서 seed layer가 80Ni/20Cr 합금으로 구성된 연성회로기판의 seed layer의 두께와 시효시간으로 인해 발생하는 접합 신뢰성의 차이를 관찰하였다. 본 연구에서는 두께 $25{\mu}m$의 폴리이미드 위에 각각 100, 200, $300{\AA}$ 두께의 80Ni/20Cr의 합금 조성을 가지는 seed layer를 스퍼터링 공정을 통해 형성한 후 전해도금법을 이용하여 $8{\mu}m$ 두께의 구리 전도층을 형성하였다. 접합 특성 평가를 위해 ICP 규격에 따라 전도층 패턴을 폭 3.2mm, 길이 230mm로 시편을 제작하여 50.8mm/min의 이송 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 또한 $85^{\circ}C$/85% 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효 처리 후 같은 방법으로 연성회로기판의 접합 특성을 평가하였다. 파면의 형상과 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 파면의 잔여물 분석을 위해 EPMA (Energy probe microanalysis)를 사용하였고 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 분석하였다.

  • PDF

Setting and Micro-structures of the Cement Pastes Using Sugar-Based Super Retarding Agents (당류계 초지연성 혼화제를 사용한 시멘트 페이스트의 응결 및 미시구조 특성)

  • Jeong, Yeong-Jin;Hyun, Seung-Yong;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.703-714
    • /
    • 2023
  • This research conducts a series of tests to investigate the setting retarding properties and strength development in cement pastes incorporating various types and dosages of sugar-based super retarding agents. Six such agents, including Sucrose, Sugar powder, Saccharin, Aspartame, Stevioside, and Mogroside, commercially available, were selected for evaluation. The study also examines the micro-structural properties of these cement pastes. The test mixtures were prepared using a 27.5% water-to-cement ratio and ordinary Portland cement. Micro-structural analyses were conducted using Scanning Electron Microscopy(SEM), X-Ray Diffraction(XRD), and Energy Dispersive Spectroscopy(EDS). The findings reveal that the incorporation of sucrose, sugar powder, and stevioside significantly retards the setting time. Particularly, adding 0.1% sucrose extended the setting time by approximately two-fold compared to the control(Plain) mixture. Most mixtures, barring those with sugar powder and stevioside, exhibited compressive strength comparable to the Plain mixture. Notably, with 0.2% sucrose, strength measurements were not feasible at 1 day, but at 3 days, the strength gains aligned with the Plain mixture. XRD, SEM, and EDS analyses confirmed the hydration delay(set retarding) of C3S due to sucrose, with further quantitative corroboration provided by EDS. SEM was used to verify the presence or absence of hydration products. The study concludes that sucrose, as a sugar-based retarder, offers effective set retarding capabilities and compressive strength development in concrete.

Photocatalytic Properties of the Ag-Doped TiO2 Prepared by Sol-Gel Process/Photodeposition (졸-겔공정/광증착법을 이용한 Ag-Doped TiO2 합성 및 광촉매 특성)

  • Kim, Byeong-Min;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • $TiO_2$ nanoparticles were synthesized by a sol-gel process using titanium tetra isopropoxide as a precursor at room temperature. Ag-doped $TiO_2$ nanoparticles were prepared by photoreduction of $AgNO_3$ on $TiO_2$ under UV light irradiation and calcinated at $400^{\circ}C$. Ag-doped $TiO_2$ nanoparticles were characterized for their structural and morphological properties by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photocatalytic properties of the $TiO_2$ and Ag-doped $TiO_2$ nanoparticles were evaluated according to the degree of photocatalytic degradation of gaseous benzene under UV and visible light irradiation. To estimate the rate of photolysis under UV (${\lambda}=365nm$) and visible (${\lambda}{\geq}410nm$) light, the residual concentration of benzene was monitored by gas chromatography (GC). Both undoped/doped nanoparticles showed about 80 % of photolysis of benzene under UV light. However, under visible light irradiation Ag-doped $TiO_2$ nanoparticles exhibited a photocatalytic reaction toward the photodegradation of benzene more efficient than that of bare $TiO_2$. The enhanced photocatalytic reaction of Ag-doped $TiO_2$ nanoparticles is attributed to the decrease in the activation energy and to the existence of Ag in the $TiO_2$ host lattice, which increases the absorption capacity in the visible region by acting as an electron trapper and promotes charge separation of the photoinduced electrons ($e^-$) and holes ($h^+$). The use of Ag-doped $TiO_2$ nanoparticles preserved the option of an environmentally benign photocatalytic reaction using visible light; These particles can be applicable to environmental cleaning applications.

Melting of Al2O3 powder using the skull melting method (Skull melting법에 의한 Al2O3 파우더 용융)

  • Choi, Hyun-Min;Kim, Young-Chool;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.24-31
    • /
    • 2019
  • The current study demonstrates an efficient procedure to create ingots from $Al_2O_3$ powder using the skull melting method to use these ingots as a starting material in conventional methods for growing synthetic single-crystal sapphire. Dimension of the cold crucible was 24 cm in inner diameter and 30 cm in inner height, 15 kg of $Al_2O_3$ powder was completely melted within 1 h at an oscillation frequency of 2.75 MHz, maintained in the molten state for 3 h, and finally air-cooled. The areal density and components of the cooled ingot by parts were analyzed through scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The areal density and $Al_2O_3$ content of the ingot were related to the temperature distribution inside the cold crucible during high-frequency induction heating, and the area with high temperature was high tends to be high in areal density and purity.

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film (Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법)

  • Park, Tae Wan;Jung, Hyunsung;Cho, Young-Rae;Lee, Jung Woo;Park, Woon Ik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.910-914
    • /
    • 2018
  • Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.

Electrodeposition of Cu(InxGa(1-x))Se2 Thin Film (CIGS 박막의 전착에 관한 연구)

  • Lee, Sang-Min;Kim, Young-Ho;Oh, Mi-Kyung;Hong, Suk-In;Ko, Hang-Ju;Lee, Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • The chalcopyrite $Cu(In_xGa_{(1-x)})Se_2$ (CIGS) is considered to be one of the effective light-absorbing materials for thin film photovoltaic solar cells. We describe the electrodeposition of CIGS thin films in ambient laboratory conditions, and suggest the electrochemical conditions to prepare stoichiometric CIGS thin films of Ga/(In + Ga) = 0.3. In acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$ and $Se^{4+}$ ions, the CIGS films of different Cu/In/Ga/Se chemical compositions were electrodeposited onto Mo/Glass substrate. The structure, morphology and chemical composition of electrodeposited CIGS films were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDS), respectively.

Preparation of PAN Nanofiber Composite Membrane with $Fe_3O_4$ Functionalized Graphene Oxide and its Application as a Water Treatment Membrane (산화철이 기능화된 산화그래핀을 함유한 PAN 나노섬유 복합분리막의 제조 및 수처리용 분리막으로의 활용)

  • Jang, Wongi;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • In this study, the nanofiber composite membrane was prepared by electrospinning method with poly (ancrylonitrile) (PAN) and a dispersed solution of graphene oxide (GO) and $Fe_3O_4$ functionalized graphene oxide (M-GO) in dimethyl formamide (DMF). The pore-diameter of prepared membranes was controlled by change of those layers. It was confirmed with SEM that the nanofiber composite membranes having fiber size of 500 nm were prepared. It was found with Raman spectroscopy and EDS that GO and M-GO were well dispersed on those membranes. Final nanofiber composite membrane showed the similar pore properties ($0.21{\sim}0.24{\mu}m$/pore-size, 40% porosity) with the commercial membrane ($0.27{\mu}m$/pore-size, 55% porosity) and their water-flux results also showed the 200% higher flux than its PAN membrane. From these results, it was expected that the nanofiber composite membrane prepared by electrospinning method could be utilized as a water-treatment membrane.