• Title/Summary/Keyword: energy transport

Search Result 1,951, Processing Time 0.031 seconds

Development of Blue Fluorescent Light Hole Transport Layer of Thiophene Base (싸이오펜 기반 청색 인광용 정공수송층 개발)

  • Ki, Hyun-Chul;Shin, Hyeon Oh;Hwang, Eun Hye;Kwon, Tae-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.91-95
    • /
    • 2017
  • We were designed the hole transport layer of the new composite skeleton structure having a high charge mobility and thermal stability. In this paper, a hole transport layer material based on thiophene molecular structure capable of hole mobility characteristics and high triplet energy was designed and synthesized. The structures and properties of the synthesized compounds were characterized by NMR, fluorescence spectroscopy and energy band gap. As a result of NMR measurement, it was confirmed that when analyzing the integrated type with the position where the measured peak is displayed, it agrees with the structure of hole transport materials. The emission characteristics of the hole transport layer material showed absorption characteristics at 412 nm and 426 nm, respectively, and exhibited emission characteristics in the range of 469 nm and 516 nm.

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han;Gil-Eon Jeong;Hyeonbeen Lee;Woo-Seok Choi;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4125-4133
    • /
    • 2023
  • The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

A Study on the Energy Saving Plan by the Utilization of transport System -Concerned to Cargo transportation- (수송체계의 효율화를 통한 에너지절약방안에 관한 연구 -화물윤송을 대상으로-)

  • 이석태
    • Journal of the Korean Institute of Navigation
    • /
    • v.9 no.2
    • /
    • pp.27-41
    • /
    • 1985
  • The transportation productivity is the throughput of utility per locations of resources and is able to be brought forth by using transportation mode. Therefore, Oil energy is necessary for using the transportation mode that is mainly consisted of four parts trucks, railroad, ship and aircraft, and Oil quantity used for such modes is not respectively same. Noticing Such a Point, the purpsoe of this paper is to reaserch the transportation mode of convertable cargoes and to minimize energy consumption quantity by adopting such a mode. We must ttend to Energy-Intensity, Transportation, Distance and cargo quantity for selecting the transport mode to energy consumption and the minimization of transportation energy consumption is concluded in the next LP Problem. As above mentioned, we can find the solution of Xij by the LP when Xij is transportation cargo per routes, and fullfil the minimization of Energy Consumption.

  • PDF

The measurement of electron drift velocity and analysis of transport coefficients in SF$_6$+$N_2$ gas (SF$_6$+$N_2$혼합기체의 전자 이동속도 측정 및 수송계수 해석)

  • 하성철;하영선
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.462-472
    • /
    • 1994
  • In this paper, electron drift velocity is experimentally measured in SF$_{6}$+N$_{2}$ Gas by induced cur-rent method and quantitaive production of electron transport coefficient is calculated by backward-prolongation of Boltzmann equation. Then electron energy distribution function and attachment coefficients are calculated. This paper can use the electron drift velocity by experimentally and the electron transport coefficient by calculated as a basic data of mixed Gas by comparing and investigating.g.

  • PDF

An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth

  • Othman, Mohd Azlishah;Ahmad, Badrul Hisham;Amat, Noor Faridah
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.635-646
    • /
    • 2013
  • This technical paper contains the information of the Dye-Sensitized Solar Cells (DSSC) working principal where diffusion mechanism acts as electron transport to absorb the sunlight energy to generate the electrical energy. DSSC is photo electrochemical cell that implements the application of photosynthesis process. The performance of electron transport in DSSC has been reviewed in order to enhance the performance and efficiency of electron transport. The improvement of the electron transport also discussed in this paper.

Nanostructured Polymer Electrolytes for Li-Batteries and Fuel Cells

  • Park, Mun-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.71.2-71.2
    • /
    • 2012
  • There are rising demands for developing more efficient energy materials to stem the depletion of fossil fuels, which have prompted significant research efforts on proton exchange fuel cells (PEFCs) and lithium ion batteries (LIBs). To date, both PEFCs and LIBs are being widely developed to power small electronics, however, their utilization to medium-large sized electric power resources such as vehicle and stationary energy storage systems still appears distant. These technologies increasingly rely upon polymer electrolyte membranes (PEMs) that transport ions from the anode to the cathode to balance the flow of electrons in an external circuit, and therefore play a central role in determining the efficiency of the devices; as ion transport is a kinetic bottleneck compared to electrical conductivity, enormous efforts have been devoted to improving the transport properties of PEMs. In present study, we carried out an in-depth analysis of the morphology effects on transport properties of PEMs. How parameters such as self-assembled nanostructures, domain sizes, and domain orientations affect conductivities of PEMs will be presented.

  • PDF

A Study on the Economical Feasibility Analysis For Development of Dual Mode Trailer System

  • Kim, Kwang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In light of the growing traffic congestion problem and congestion cost, the container transport by railway has to be increased. The freight transport by railway can have decided advantages over trucks in terms of energy efficiency, emissions and cost for certain freight movements, just as transportation in the metropolitan region can have great advantages over driving truck. But the freight transport by truck should gain significant mobility benefits from a freight railway system. Thus, the DMT(Dual Mode Trailer) transport system which is coupled railway transport advantages with load transport advantages has been developed and used in the european countries. The DMT transport will therefore serve the areas required by transport organizers. The purpose of this paper is to estimate economical feasibility analysis for development of DMT transport system. Consequently, this study analyzed the characteristics of the DMT system. The horizontal load.unload system is being considered as an adoptable DMT system in consideration of the situation in Korea.

An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance (장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구)

  • Yoon, Seok-Mann;Moon, Seung-Hyun;Lee, Seung-Jae;Choi, Soon-Young
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.195-202
    • /
    • 2010
  • A third of primary energy is lost as a waste heat. To improve this inefficient use of energy, systems using chemical reaction have been suggested and studied. In this study, methanol decomposition/synthesis reaction as a chemical reaction was selected for long time heat storage and long distance heat transport system because of safe, cheap and gaseous product. The purpose of this study is to find the optimal conditions in the methanol decomposition and synthesis reactions for long distance heat transport. Several parameters such as reaction temperature, pressure, $H_2$/CO ratio, space velocity, catalyst particle size were tested to find the effects on the reaction rates for the methanol synthesis. And the reaction temperature, space velocity, catalyst particle size were tested to find the effects on the production concentration for the methanol decomposition.

Conceptual Reactive Transport Modeling of Long-term Concrete Degradation and Uranium Solubility (반응성용질이동 모델링을 이용한 장기간의 콘크리트 변질과정과 우라늄의 용해도에 대한 개념 모델링)

  • Choi, Byoung-Young;Koh, Yong-Kwon;Kim, Geon-Young;Yoo, Si-Won;An, Sang-Won;Bae, Dae-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 2008
  • Long-term degradation of coment barrier by diffusion was studied with reactive transport modeling. The result of modeling showed that cement barrier was altered about 30cm thickness after 50,000 years. The pH decreased from 13.0 to 11.9 because of depletion of alkali ions, and dissolution/precipitation of portlandite and CSH (Calcium Silicate Hydrate). In addition, porosity increased about 0.3 because of dissolution of portlandite and $CSH2.0(Ca_2SiO_3(OH)_2:0.17H_2O)$. The solubility of uranium also increased with the increase of pe value The results of this study indicate that long-term degradation of comet can enhance the transport of nuclide by changing pH, pe, porosity in barrier.

  • PDF

Verification of the Contaminant Transport Numerical Model in Subsurface Soil (토양내 오염물이동 수치모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • The groundwater flow and contaminant transport numerical models have been established for understanding the movement of pollutants in surface soil environment. The numerical solutions were compared with the analytic solutions for the verification and the application of the models. The numerical solutions from the groundwater and transport models agreed welt with analytic solutions. Especially, the results of groundwater flow model were validated in one- and two-dimensional heterogeneous media. Therefore, it will represent well the characteristics of the heterogeneous media in the field applications. Also, the phenomena of the pollutant dispersion represented quite well by the advection and the hydrodynamic dispersion in the results of the transport model. The important input factor is the choice of complicated boundary conditions in operating the numerical models. The numerical results are influenced by the choice of the proper boundary conditions.