• Title/Summary/Keyword: energy transfer mechanism

Search Result 338, Processing Time 0.033 seconds

AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance

  • Liu, Chunping;Lin, Haili;Gao, Shanmin;Yin, Ping;Guo, Lei;Huang, Baibiao;Dai, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.441-447
    • /
    • 2014
  • $AgI/AgCl/H_2WO_4$ double heterojunctions photocatalyst was prepared via deposition-precipitation followed by ion exchange method. The structure, crystallinity, morphology, chemical content and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL). The photocatalytic activity of the $AgI/AgCl/H_2WO_4$ was evaluated by degrading methyl orange (MO) under visible light irradiation (${\lambda}$ > 400 nm). The double heterojunctions photocatalyst displayed more efficient photocatalytic activity than pure AgI, AgCl, $H_2WO_4$ and AgCl/$H_2WO_4$. Based on the reactive species and energy band structure, the enhanced photocatalytic activity mechanism of $AgI/AgCl/H_2WO_4$ was discussed in detail. The improved photocatalytic performance of $AgI/AgCl/H_2WO_4$ double heterojunctions could be ascribed to the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs, which was in close relation with the $AgI/AgCl/H_2WO_4$ heterojunctions formed between AgI, AgCl and $H_2WO_4$.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part I: Characteristics of Combustion (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part I: 연소특성)

  • Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The characteristics of flame shape, laminar burning velocity, emissions and heat flux of stagnation point in premixed impinging jet flame of syngas fuel with 10% hydrogen content were experimentally investigated. Also, the adiabatic temperature and burning velocity are calculated by Chemkin package with USC-II mechanism. The equivalence ratios(0.8~5.0) and dimensionless separation distance(2.0~5.0) with fixed Reynolds number(1800) are main parameters in this work. Different flame shapes and colors were observed for different impingement conditions. The experimental results of burning velocity by flame surface area have a consistent with previous works and numerical simulation of this work. The inner flame length could be predicted with the ratio of mixture velocity and burning velocity from a simple formulation by the laminar burning velocity definition. It has been observed that the heat fluxes at stagnation point are directly affected by the flame shape including the separation distance. The emission results in impinging flame of syngas fuel show that the characteristics of $NO_x$ emission traced well with adiabatic temperature trend and CO emission due to fuel rich condition increased continuously with respect to the equivalence ratio.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells (카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성)

  • Kim, MyeongSeok;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Comparison of Heat Insulation Characteristics of Multi-layer Thermal Screen and Development of Curtain System (다겹보온자재의 보온성 비교 및 커튼개폐장치 개발)

  • Lee, Si-Young;Kim, Hark-Joo;Chun, Hee;Yum, Sung-Hyun;Lee, Hyun-Joo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • This study was accomplished to compare energy saving effects of several heat insulation materials in greenhouse and to develop new automatic opening and closing equipment which is suitable to the most effective heat insulation material. To find out more effective heat insulation material, the magnitude of heat transfer occurred through aluminum screen (ALS), non-woven fabric (NWF), double-layer aluminum screen with chemical cotton sheet (DAL), and multi-layer fabric screen material quilted with non-woven fabric, chemical cotton, poly foam, and polypropylene (MLF) were compared relatively. The results showed that the relative magnitude of heat transfer occurred through MLF was lower than DAL and ALS by 23.3% and 43.0% respectively. MLF screen material was the most effective compared with other heat insulation materials. But because of thickness, there was a need of new mechanism for automatic operation in greenhouse. Accordingly, new screen system using MLF-thick but profitable for keeping warm in greenhouse-was developed. Opening & closing equipment was designed to roll MLF with pipe axis during opening process and pull MLF with string during closing process with electric motors, clutches, drums, and so on. In hot pepper cultivation and energy saving test during winter time, the early stage yield of pepper under MLF screen system was higher than NWF by 27%, and gasoline consumption of MLF screen system was lower than NWF by 46%.

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

A Devolatilization Model of Woody Biomass Particle in a Fluidized Bed Reactor (유동층 반응기에서의 목질계 바이오매스 입자의 탈휘발 예측 모델)

  • Kim, Kwang-Su;Leckner, Bo;Lee, Jeong-Woo;Lee, Uen-Do;Choi, Young-Tai
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.850-859
    • /
    • 2012
  • Devolatilization is an important mechanism in the gasification and pyrolysis of woody biomass, and has to be accordingly considered in designing a gasifier. In order to describe the devolatilization process of wood particle, there have been proposed a number of empirical correlations based on experimental data. However, the correlations are limited to apply for various reaction conditions due to the complex nature of wood devolatilization. In this study, a simple model was developed for predicting the devolatilization of a wood particle in a fluidized bed reactor. The model considered the drying, shrinkage and heat generation of intra-particle for a spherical biomass. The influence of various parameters such as size, initial moisture content, heat transfer coefficient, kinetic model and temperature, was investigated. The devolatilization time linearly increased with increasing initial moisture content and size of a wood particle, whereas decreases with reaction temperature. There is no significant change of results when the external heat transfer coefficient is over 300 $W/m^2K$, and smaller particles are more sensitive to the outer heat transfer coefficient. Predicted results from the model show a similar tendency with the experimental data from literatures within a deviation of 10%.

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.