• Title/Summary/Keyword: energy transfer mechanism

검색결과 338건 처리시간 0.033초

2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람 (Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018)

  • 김석환;이재규;김유진
    • 대기
    • /
    • 제31권2호
    • /
    • pp.199-214
    • /
    • 2021
  • A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

고분자 박막 내에 담지 된 실리카 마이크로입자의 광산란 효과에 의한 광에너지 상향전환 효율 향상 (Light Scattering-enhanced Upconversion Efficiency in Silica Microparticles-embedded Polymeric Thin Film)

  • 최현석;이학래;이명수;박정민;김재혁
    • 공업화학
    • /
    • 제30권1호
    • /
    • pp.88-94
    • /
    • 2019
  • 삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술(triplet-triplet annihilation upconversion, TTA-UC)은 특정 조건을 만족시키는 유기물들의 에너지 전달 및 융합 과정에 의해 저에너지의 광자를 고에너지의 광자로 변환시키는 신개념 에너지 전환기술이다. 본 연구에서는 실리카 마이크로입자(silica microparticle, SM)를 UC가 구현되는 폴리우레탄 박막 내에 담지 시켜 입사되는 광원의 광산란 효과를 도모함으로써 TTA-UC 효율을 향상시키고, 그 기작에 대해 탐구하였다. Seeded growth method를 통하여 약 950 nm의 균일한 크기를 갖는 SM을 합성하였으며, UC 박막 내에 담지 된 SM의 농도를 증가시킴에 따라 635 nm 광원 조사 시 430-570 nm 영역에서의 UC 세기가 최대 1.64배 증가함을 확인하였다. 삼중항 lifetime 측정을 통하여 광감응제 PdTPBP와 전자수용체 perylene 간의 triplet-triplet energy transfer(TTET) 효율을 분석한 결과, 박막 내에 담지 된 SM이 chromophore 간의 TTET에 미치는 영향은 미미한 것으로 나타났다. 또한, 입사 강도-UC 세기의 상관관계를 분석하여 TTA-UC 효율을 분석한 결과, SM이 박막 내에 존재할 경우 UC 양자효율이 최대 1.5배 향상됨을 확인하였다.

CaO와 $TiO_2$분말로 합성된 $CaTiO_3$:Pr형광체의 발광구조 해석과 음극선 발광특성 (The Luminescent Mechnism and Cathodoluminescence of $CaTiO_3$:Pr Synthesized with CaO and $TiO_2$ Powders)

  • 박용규;한정인;곽민기;이인규;김대현
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.646-651
    • /
    • 1998
  • In this present study, the luminescence characteristics and mechanism of energy $CaTiO_3$:Pr phosphor were studied using disk specimens sintered at various temperatures and envirenment. A single-phase $CaTiO_3$:Pr was synthesized by sintering above 140$0^{\circ}C$ and its crystal structure was found to be perovskite orthorhombic. A dominant peak around 360 nm and a broad peak around 395 nm were observed in the PLE(Photoluminescence Excitation) spectrum of $CaTiO_3$:Pr with fixed emission wavelength at 612 nm, the decay time of 360 nm excitation was found to be longer than that of 395 nm excitation. From this result, it is assumed that the free carrier excited to 360 nm is transferred to 395 nm energy level. Therefore, the decrease in 395 nm intensity observed in CaTiO$_3$:Pr specimens sintered in Ar gas environment induced shorter decay time and improved CL luminescence.

  • PDF

Reflood Experiments with Horizontal and Vertical Flow Channels

  • Chung, Moon-Ki;Lee, Seung-Hyuck;Park, Choon-Kyung;Lee, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.153-162
    • /
    • 1980
  • 냉각재상실사고의 재관수 단계중 연료봉 피복재의 온도거동 및 열전달 기구를 파악하는 것은 비상노심냉각계통 및 원자로의 안전성해석에 중요하다. 냉각재유동채널의 방위가 rewetting과정에 미치는 영향을 연구하기 위하여 수직 및 수경 유동채널을 이용한 실험을 수행하였으며, 노심이 수평압력관으로 구성되어 있는 CANDU원자로에 관한 실험을 중점적으로 수행하여 그 결과를 수직채널의 결과와 비교 하였다. 또한 rewetting현상을 육안관찰가기 위해 환상형 테스트부 및 외부에서 가열되는 석영관을 사용하였다. 실험결과로써 수평채널에서의 rewetting 속도는 유동의 층상 현상에 크게 영향을 받으나 그 평균값은 수직채널리 경우와 큰차이없음을 알 수 있었다.

  • PDF

Chemical Inhibition of Cell Recovery after Irradiation with Sparsely and Densely Ionizing Radiation

  • Evstratova, Ekaterina S.;Kim, Jin-Hong;Lim, Young-Khi;Kim, Jin Kyu;Petin, Vladislav G.
    • 방사선산업학회지
    • /
    • 제10권4호
    • /
    • pp.199-204
    • /
    • 2016
  • The dependence of cell survival on exposure dose and the duration of the liquid-holding recovery (LHR) was obtained for diploid yeast cells irradiated with ionizing radiation of different linear energy transfer (LET) and recovering from radiation damage without and with various concentrations of cisplatin - the most widely used anticancer drug. The ability of yeast cells to recover from radiation damage was less effective after cell exposure to high-LET radiation, when cells were irradiated without drug. The increase in cisplatin concentration resulted in the disappearance of this difference whereas the fraction of irreversible damage was permanently enlarged independently of radiation quality. The probability of cell recovery was shown to be constant for various conditions of irradiation and recovery. A new mechanism of cisplatin action was suggested according with which the inhibition of cell recovery after exposure to ionizing radiations was completely explained by the production of irreversible damage.

Source & crustal propagation effects on T-wave envelopes

  • 윤숙영;박민규;이원상
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2010년도 학술대회 초록집
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

Design Optimization of CRDM Motor Housing

  • Lee, Jae Seon;Lee, Gyu Mahn;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.586-592
    • /
    • 2016
  • The magnetic-jack type CRDM withdraws or inserts a control rod assembly from/to the reactor core to control the core reactivity. The CRDM housings form not only the path of the electromagnetic field but also the pressure boundary of a nuclear reactor, and a periodic in-service inspection should be carried out if there are welded or flange jointed parts on the pressure boundary. The in-service inspection is a time-consuming process during the reactor refueling, and moreover it is difficult to perform the inspection over the reactor head. A magnetic motor housing is applied for the current SMART CRDM and has several welding joints, however a nonmagnetic motor housing with fewer or no welding joints may improve the operational efficiency of the nuclear reactor by avoiding or simplifying the in-service inspection process. Prior to the development, the magnetic field transfer efficiency of the nonmagnetic housing was required to be assessed. It was verified and optimized by the electromagnetic analysis of the lifting force estimation. Magnetic flux rings were adopted to improve the efficiency. In this paper, the design and optimization process of a nonmagnetic motor housing with the magnetic flux rings for the SMART CRDM are introduced and the analyses results are discussed.

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

SENSITIZED PHOTOINITIATING SYSTEM USED IN PHOTOPOLYMER FILMS

  • Liu, A.D;Trifunac, A.D;Krongauz, V.V.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.20-24
    • /
    • 1998
  • Photploymer films are widely used in printing and electronic industries, and their usage is expanding to encompass holography, data storage and data processing, optical waveguides and compact disks, etc. One of widely used photoplymerization initiator, 20chloro-hexaarylbiimidazole (o-Cl-HABI), is studied by laser flash photolysis in dichloromethane solution in the absence and presence of the visible light photosensitizing dye, 2, 5-bis[(2, 3, 6, 7 -tetrahydro- 1H, 5H -benzo [i, j,] quinolizin -1-yl) methylene]-cyclopenta-none, (JAW). In the presence of JAW, an increase in triarylimidazolyl radicals L.formation is observed in relative to the absence of JAW. The mechanism of this photosensitizing dissociation is concluded as the dissociation of the o-Cl-HABI radical anion formed by the electron transfer from excited singlet state of JAW to o-Cl-HABI. The observed formation of L.radicals exhibits a linear dependence on o-Cl-HABI concentration. The rate constant of electron transfer obtained from this dependence is equal to (1.0$\pm$0.2) x $10^9 M^{-1}s^{-1}$. No reaction between the excited triplet state of JAW and o-Cl-HABI is found.

  • PDF

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro;Kang, Cheon Soo;Hayashi, Takuya;Kim, Yoong Ahm
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.60-65
    • /
    • 2018
  • Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.