• Title/Summary/Keyword: energy technology application

Search Result 2,106, Processing Time 0.037 seconds

Trend in Research and Development Related to Motors and Permanent Magnets for Solving Rare-earth Resources Problem (희토류 자원문제 해결을 위한 모터 및 영구자석 연구개발 동향)

  • Lee, J.G.;Yu, J.H.;Kim, H.J.;Jang, T.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.58-65
    • /
    • 2012
  • Since Nd-Fe-B magnet was first synthesized in 1983, many new applications have emerged in the past two decades. With regard to motor market, it will expand because of strong energy saving requirements from the automobile and electric application markets. Especially, permanent magnet motors for hybrid and electric vehicles are drawing great attention and the usage of Nd-Fe-B magnets will increase all the more hereafter. There is, however, a serious problem as motors in such eco-friendly cars are said to operate in high temperatures of about $200^{\circ}C$. Nd-Fe-B magnet has a drawback of dramatically decreasing coercive force with the rise of temperature. In order to improve this aspect. the best way is to add dysprosium (Dy) into the magnet. So, Dy has become an essential element for Nd-Fe-B high-performance magnet as it helps to maintain coercive force even at high temperatures. On the other hand, the rare earth resources in the earth crust are eccentrically-located and its majority is produced in China. There is a need to reduce its usage as, especially compared to light rare earth elements as neodymium (Nd) and samarium (Sm), heavy rare earth elements including Dy are unevenly distributed to a dramatic degree, their output low, and their prices are about 10 times that of Nd. The present article includes a summary of the trend in research and development of motors and permanent magnets to solve rare-earth resources problem.

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs (LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상)

  • Kang, Woo Hyun;Zhang, Fan;Lee, June Woo;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.

The Effect of the Performance Compensation System on Organizational Effectiveness and Motivation and Corporate Performance : Focused on the Employees of Automobile Maintenance Service Companies (성과보상제도가 조직유효성 및 동기부여와 기업성과에 미치는 영향 : 자동차정비 서비스업체 종업원을 중심으로)

  • Hwang, Jung-Yup;Park, Chan-Kwon;Park, Sung-Min;Kim, Chae-Bogk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.95-114
    • /
    • 2021
  • This study is to study the effect of corporate performance compensation system on organizational effectiveness and motivation, and the effect of organizational effectiveness and motivation on corporate performance, targeting employees of automobile maintenance service companies. 430 questionnaires obtained through the survey were used for the study. As a result of testing the research hypothesis, tangible reward had a significant positive (+) effect on job satisfaction, but intangible reward had a positive (+) effect on job satisfaction, but it was not significant. Also, tangible and intangible rewards have a significant positive (+) effect on organizational commitment and motivation. Job satisfaction has a significant positive (+) effect on productivity and service quality. However, organizational commitment had a significant positive (+) effect on productivity, but had a positive (+) effect on service quality, but was not significant. Lastly, motivation has a significant positive (+) effect on productivity and service quality. Through the research results, the relationship structure between the performance compensation system, organizational effectiveness and motivation, and corporate performance was identified, and the application of the performance compensation system to employees in the automobile industry was presented.

Analysis of the relationship between service robot and non-face-to-face

  • Hwang, Eui-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.247-254
    • /
    • 2021
  • As COVID-19 spread, non-face-to-face activities were required, and the use of service robots is gradually increasing. This paper analyzed the relationship between the increasing trend of service robots before and after COVID-19 through keyword search containing the keyword 'service robot AND non-face-to-face' over the past three years (2018.10-20219) using BigKines, a news big data analysis system. As a result, there were 0 cases in the first period (2018.10~2019.9), 52 cases in the second period (2019.10~2020.9) and 112 cases in the third period (2020.10~2021.9), an increase of 115% compared to the second period. The keywords commonly mentioned in the analysis of related words in the second and third periods were COVID-19, AI, the Ministry of Trade, Industry, and Energy, and LG Electronics, and the weight of COVID-19 was the largest, confirming that the analysis keyword. Due to the spread of Corona 19, non-face-to-face is required, and with the development of information and communication technology, the field of application of service robots is rapidly increasing. Accordingly, for the commercialization of service robots that will lead the non-face-to-face economy, there is an urgent need to nurture human resources that require standardization and expertise in safety and performance fields.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.

Safety evaluation of atmospheric pressure plasma jets in in vitro and in vivo experiments

  • Lee, Ji-Yoon;Park, Shin-Young;Kim, Kyoung-Hwa;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.213-223
    • /
    • 2021
  • Purpose: The atmospheric pressure plasma jet (APPJ) has been introduced as an effective disinfection method for titanium surfaces due to their massive radical generation at low temperatures. Helium (He) has been widely applied as a discharge gas in APPJ due to its bactericidal effects and was proven to be effective in our previous study. This study aimed to evaluate the safety and effects of He-APPJ application at both the cell and tissue levels. Methods: Cellular-level responses were examined using human gingival fibroblasts and osteoblasts (MC3T3-E1 cells). He-APPJ was administered to the cells in the experimental group, while the control group received only He-gas treatment. Immediate cell responses and recovery after He-APPJ treatment were examined in both cell groups. The effect of He-APPJ on osteogenic differentiation was evaluated via an alkaline phosphatase activity assay. In vivo, He-APPJ treatment was administered to rat calvarial bone and the adjacent periosteum, and samples were harvested for histological examination. Results: He-APPJ treatment for 5 minutes induced irreversible effects in both human gingival fibroblasts and osteoblasts in vitro. Immediate cell detachment of human gingival fibroblasts and osteoblasts was shown regardless of treatment time. However, the detached areas in the groups treated for 1 or 3 minutes were completely repopulated within 7 days. Alkaline phosphatase activity was not influenced by 1 or 3 minutes of plasma treatment, but was significantly lower in the 5 minute-treated group (P=0.002). In vivo, He-APPJ treatment was administered to rat calvaria and periosteum for 1 or 3 minutes. No pathogenic changes occurred at 7 days after He-APPJ treatment in the He-APPJ-treated group compared to the control group (He gas only). Conclusions: Direct He-APPJ treatment for up to 3 minutes showed no harmful effects at either the cell or tissue level.

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

A Study on Performance Evaluation of Light Shelf according to the Reflectivity of Interior Space (실내 공간의 반사율에 따른 광선반 성능평가 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Kim, Yongseong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.461-470
    • /
    • 2015
  • There has been a significant increase in the amount of research on reducing the lighting power consumption of buildings and also an increasing demand for technological development. Light shelf has been recognized as one of the most efficient solutions to this issue and related researches have been conducted, which have mostly focused on factors related to simple light shelves and are not suitable as an appropriate basis for the design of light shelves. Thus this study aims to establish the proper design basis for light shelves by evaluating the performance of shelves per reflection rate in indoor areas. Power consumption rate and indoor illumination intensity distribution of a testbed built based on actual living conditions were calculated for the performance evaluation, of which the results are as following: 1) Reduction of reflection rate of ceiling and walls caused average illumination intensity in summer, winter and median seasons, and evenness per reflection rate of indoor areas was found to be different in summer, winter and median seasons, making it a necessary consideration for designing light shelves. 2) Calculation of power consumption from lighting control showed that a high reflection rate of indoor areas may be suitable for power consumption reduction, and that reflection rates higher than 80% for ceilings and higher than 75% for walls in terms of the efficiency of researches on the indoor reflection rate and its application would be appropriate. This study is meaningful as the research focuses on light shelves based on considering indoor environmental factors. More studies will be required that consider a variety of factors.