• 제목/요약/키워드: energy security

검색결과 912건 처리시간 0.024초

무선센서 네트워크에서의 지역-중앙 클러스터 라우팅 방법 (An Energy Efficient Routing Algorithm based on Center of Local Clustering in Wireless Sensor Networks)

  • 김명하;이충세
    • 융합보안논문지
    • /
    • 제14권2호
    • /
    • pp.43-50
    • /
    • 2014
  • 최근 무선 센서 네트워크(WSN : Wireless Sensor Network)에서 센서노드의 에너지 소모를 균등화 하고 효율성을 향상시켜 전제 네트워크의 수명을 최대화하기 위한 다양한 계층적 라우팅 프로토콜들이 제안되고 있다. 특히, 멀티-홉 기법이 향상된 에너지 효율성과 실제 적용 가능한 모델로 많은 각광을 받고 있다. 멀티-홉 기법에서는 센서 노드사이 거리에 따라 전송 에너지를 효율적으로 조절하는 것이 가능하다고 가정한다. 이 논문에서는 대표적인 클러스터 알고리즘인 LEACH에 대하여 분석하고 이 알고리즘의 단점을 보완하고 에너지를 효율적으로 사용할 수 있는 지역-중앙 클러스터 라우팅 알고리즘을 제안한다. 제안한 클러스터 라우팅 알고리즘과 LEACH의 성능을 시뮬레이션을 통해 성능을 평가하고 분석하고 NS-2 시뮬레이션을 이용하여 성능 결과를 제시한다.

기후변화와 대기환경의 통합적 관리에 대한 고찰 (A Review of the Integrated Strategy for Climate Change and Air Pollution Management)

  • 송창근;이석조;윤종수
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.805-818
    • /
    • 2011
  • The unequivocal risk of climate change, the weakness of energy security, and the problem of air quality will be possibly accelerated by the same reason, the enhanced fossil fuel dependancy in the future. It is obvious that greenhouse gases and air pollutants are mainly emitted from same sources. Moreover, greenhouse gases and air pollutants have their adversed impacts on same socio-economical, and environmental sectors. With these regards, several but limited studies have emphasized on the importance of the integrated management of climate change and air quality problem. In this study, we address the current trend of energy consumption and the change of air quality condition. Also the related policies are checked out in order to reduce emissions of greenhouse gases and air pollutants in Korea. By surveying previous studies, it is shown that the cost of climate change actions can be reduced by air quality co-benefits and vis-a-versa. Also the integrated strategy for climate change and air quality is introduced in term of cost-effectiveness and co-benefit.

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.

GT-PSO- An Approach For Energy Efficient Routing in WSN

  • Priyanka, R;Reddy, K. Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.17-26
    • /
    • 2022
  • Sensor Nodes play a major role to monitor and sense the variations in physical space in various real-time application scenarios. These nodes are powered by limited battery resources and replacing those resource is highly tedious task along with this it increases implementation cost. Thus, maintaining a good network lifespan is amongst the utmost important challenge in this field of WSN. Currently, energy efficient routing techniques are considered as promising solution to prolong the network lifespan where multi-hop communications are performed by identifying the most energy efficient path. However, the existing scheme suffer from performance related issues. To solve the issues of existing techniques, a novel hybrid technique by merging particle swarm optimization and game theory model is presented. The PSO helps to obtain the efficient number of cluster and Cluster Head selection whereas game theory aids in finding the best optimized path from source to destination by utilizing a path selection probability approach. This probability is obtained by using conditional probability to compute payoff for agents. When compared to current strategies, the experimental study demonstrates that the proposed GTPSO strategy outperforms them.

Study on the digitalization of trip equations including dynamic compensators for the Reactor Protection System in NPPs by using the FPGA

  • Kwang-Seop Son;Jung-Woon Lee;Seung-Hwan Seong
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2952-2965
    • /
    • 2023
  • Advanced reactors, such as Small Modular Reactors or existing Nuclear Power Plants, often use Field Programmable Gate Array (FPGA) based controllers in new Instrumentation and Control (I&C) system architectures or as an alternative to existing analog-based I&C systems. Compared to CPU-based Programmable Logic Controllers (PLCs), FPGAs offer better overall performance. However, programming functions on FPGAs can be challenging due to the requirement for a hardware description language that does not explicitly support the operation of real numbers. This study aims to implement the Reactor Trip (RT) functions of the existing analog-based Reactor Protection System (RPS) using FPGAs. The RT equations for Overtemperature delta Temperature and Overpower delta Temperature involve dynamic compensators expressed with the Laplace transform variable, 's', which is not directly supported by FPGAs. To address this issue, the trip equations with the Laplace variable in the continuous-time domain are transformed to the discrete-time domain using the Z-transform. Additionally, a new operation based on a relative value for the equation range is introduced for the handling of real numbers in the RT functions. The proposed approach can be utilized for upgrading the existing analog-based RPS as well as digitalizing control systems in advanced reactor systems.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Artificial Intelligence Inspired Intelligent Trust Based Routing Algorithm for IoT

  • Kajol Rana;Ajay Vikram Singh;P. Vijaya
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.149-161
    • /
    • 2023
  • Internet of Things (IoT) is a relatively new concept that has gained immense popularity in a short period of time due to its wide applicability in making human life more convenient and automated. As an illustration: the development of smart homes, smart cities, etc. However, it is also accompanied by a substantial number of risks and flaws. IoT makes use of low-powered devices, so secure, less time-consuming and energy-intensive transmission (routing) of messages due to the limited availability of energy is one of the many and most significant concerns for IoT developers. The following paper presents a trust-based routing scenario for the Internet of Things (IoT) that exploits the past transmission record from the cupcarbon simulator's log files. Artificial Neural Network is used to quantify knowledge of trust, calculate the value of trust, and share this information with other network devices. As a human behavioural pattern, trust provides a superior method for making routing decisions. If there is a tie in the trust values and no other path is available, the remaining battery power is used to break the tie and make a forwarding decision; this is also seen as a more efficient use of the available resources. The proposed algorithm is observed to have superior energy consumption and routing decisions compared to conventional routing algorithms, and it improves the communication pattern.

An IoT-Aware System for Managing Patients' Waiting Time Using Bluetooth Low-Energy Technology

  • Reham Alabduljabbar
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.83-92
    • /
    • 2024
  • It is a common observation that whenever any patient arrives at the front desk of a hospital, outpatient clinic, or other health-associated centers, they have to first queue up in a line and wait to fill in their registration form to get admitted. The long waiting time without any status updates is the most common complaint, worrying health officials. In this paper, UrNext, a location-aware mobile-based solution using Bluetooth low-energy (BLE) technology, is presented to solve the problem. Recently, a technology-oriented method has been gaining popularity in solving the healthcare sector's problems, namely the Internet of Things (IoT). The implementation of this solution could be explained through a simple example that when a patient arrives at a clinic for her consultation. There, instead of having to wait in long lines, she will be greeted automatically, receive a push notification telling her that she has been admitted along with an estimated waiting time for her consultation session. This will not only provide the patients with a sense of freedom but would also reduce uncertainty levels that are generally observed, thus saving both time and money. This work aimed to improve clinics' quality of services and organize queues and minimize waiting times in clinics, leading to patient comfortability and reducing the burden on nurses and receptionists. The results demonstrated that the presented system was successful in its performance and helped achieve high usability.

WSN 환경에서 센서 노드의 에너지 값을 이용한 노드 인증 메커니즘에 관한 연구 (A Study on Node Authentication Mechanism using Sensor Node's Energy Value in WSN)

  • 김보승;임휘빈;최종석;신용태
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.86-95
    • /
    • 2011
  • 무선 센서 네트워크에서의 센서 노드는 제한적인 하드웨어 성능과 네트워크 토폴로지가 수시로 변하는 무선 통신을 이용하기 때문에 유선 네트워크보다 보안이 취약하다. 보안을 강화하는 기법 중 노드 인증 메커니즘은 노드의 ID를 이용한 데이터 위변조 공격이나 네트워크의 라우팅을 방해하는 라우팅 공격을 방어하는 데 이용한다. 본 논문에서는 베이스 스테이션이 인증 요청을 하는 노드의 시간에 따른 에너지 값을 이용해서 인증키를 생성하고, 다른 노드와의 데이터 전송을 위한 통신 절차를 수행하는 AM-E 메커니즘을 제안한다. 노드의 에너지 값은 시간에 따라 변하므로, 인증 요청을 할 때마다 인증키가 바뀌는 특징을 갖는다. 이러한 특징은 센서 네트워크의 보안성을 강화하여 보다 안전한 WSN을 구성하는데 일조할 것이다.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.