• Title/Summary/Keyword: energy retrofit

검색결과 166건 처리시간 0.02초

가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가 (Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30))

  • 김대훈;이동규;이기학
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Economic analysis of biomass torrefaction plants integrated with corn ethanol plants and coal-fired power plants

  • Tiffany, Douglas G.;Lee, Won Fy;Morey, Vance;Kaliyan, Nalladurai
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.127-146
    • /
    • 2013
  • Torrefaction technologies convert assorted biomass feedstocks into energy-concentrated, carbon neutral fuel that is economically transported and easily ground for blending with fossil coals at numerous power plants around the world without needs to retrofit. Utilization of torrefied biomass in conventional electric generating units may be an increasingly attractive alternative for electricity generation as aging power plants in the world need to be upgraded or improved. This paper examines the economic feasibility of torrefaction in different scenarios by modeling torrefaction plants producing 136,078 t/year (150,000 ton/year) biocoal from wood and corn stover. The utilization of biocoal blends in existing coal-fired power plants is modeled to determine the demand for this fuel in the context of emerging policies regulating emissions from coal in the U.S. setting. Opportunities to co-locate torrefaction facilities adjacent to corn ethanol plants and coal-fired power plants are explored as means to improve economics for collaborating businesses. Life cycle analysis was conducted in parallel to this economic study and was used to determine environmental impacts of converting biomass to biocoal for blending in coal-fired power plants as well as the use of substantial flows of off-gasses produced in the torrefaction process. Sensitivity analysis of the financial rates of return of the different businesses has been performed to measure impacts of different factors, whether input prices, output prices, or policy measures that render costs or rewards for the businesses.

Using friction dampers in retrofitting a steel structure with masonry infill panels

  • Zahrai, Seyed Mehdi;Moradi, Alireza;Moradi, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.309-325
    • /
    • 2015
  • A convenient procedure for seismic retrofit of existing buildings is to use passive control methods, like using friction dampers in steel frames with bracing systems. In this method, reduction of seismic demand and increase of ductility generally improve seismic performance of the structures. Some of its advantages are development of a stable rectangular hysteresis loop and independence on environmental conditions such as temperature and loading rate. In addition to friction dampers, masonry-infill panels improve the seismic resistance of steel structures by increasing lateral strength and stiffness and reducing story drifts. In this study, the effect of masonry-infill panels on seismic performance of a three-span four-story steel frame with Pall friction dampers is investigated. The results show that friction dampers in the steel frame increase the ductility and decrease the drift (to less than 1%). The infill panels fulfill their function during the imposed drift and increase structural strength. It can be concluded that infill panels together with friction dampers, reduced structural dynamic response. These infill panels dissipated input earthquake energy from 4% to 10%, depending on their thickness.

기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석 (Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts)

  • 김단아;이광규;안동규
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

A ductile steel damper-brace for low-damage framed structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.325-337
    • /
    • 2022
  • In this research, an earthquake-resistant structural system consisting of a pin-connected steel frame and a bracing with metallic fuses is proposed. Contrary to the conventional braced frames, the main structural elements are deemed to remain elastic under earthquakes and the seismic energy is efficiently dissipated by the damper-braces with an amplification mechanism. The superiority of the proposed damping system lies in easy manufacture, high yield capacity and energy dissipation, and an effortless replacement of damaged fuses after earthquake events. Furthermore, the stiffness and the yield capacity are almost decoupled in the proposed damper-brace which makes it highly versatile for performance-based seismic design compared to most other dampers. A special attention is paid to derive the theoretical formulation for nonlinear behavior of the proposed damper-brace, which is verified using analytical results. Next, a direct displacement-based design procedure is provided for the proposed system and an example structure is designed and analyzed thoroughly to check its seismic performance. The results show that the proposed system designed with the provided procedure satisfies the given performance objective and can be used for developing highly efficient low-damage structures.

최적 트림 조건하에서 벌브개조를 통한 선박저항성능 개선 연구 (Numerical Simulation for Improvement in Resistance Performance by Bulb Retrofit under Optimal Trim Conditions)

  • 박현석;서대원
    • 해양환경안전학회지
    • /
    • 제28권6호
    • /
    • pp.1070-1077
    • /
    • 2022
  • 최근 국제해사기구의 해양환경오염규제가 강화되어 오고 있다. 선박의 에너지 효율지수는 선박의 설계관점에서 매우 중요한 지표이다. 더욱이 새롭게 건조되는 선박은 물론 기존 운항 선박에도 에너지 효율지수를 만족하도록 강화하고 있다. 이에 따라 운항되고 있는 기존선박의 에너지 효율지수를 높이기 위해 선수 벌브개조, 운항 중 트림 최적화, 에너지 절감장치등 다양한 방법이 적용되고 있다. 본 연구에서는 전산 유체역학을 이용하여 다양한 선수/선미 트림조건에서 선박의 저항성능을 계산하고 분석하였다. 이를 바탕으로 최적화 된 트림조건에서 선박의 저항성능을 더욱 개선하기 위해 선수 벌브의 형상을 재설계하였다. 그 결과 정수 중에서 개선된 벌브 형상을 적용한 경우, 유효마력이 약 5% 향상되는 것을 확인하였으며, 향후 파도 중에서 재설계된 벌브형상이 저항성능에 미치는 영향을 조사할 예정이다.

단일 처리기를 사용한 원자력발전소 SOE 계통의 성능개선에 관한 연구 (A Study on the Retrofit of SOE System Using Single Processor on Nuclear Power Plant)

  • 이병채;서영;문채주
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.153-159
    • /
    • 1996
  • 원자력발전소에서 사용되는 SOE 계통은 발전소 자료수집계통의 일부분이다. 기존 원자력발전소 SOE 계통은 컴퓨터의 하드웨어 및 소프트웨어를 자료수집계통과 공유하고 3개의 프로세서를 사용하여 사고나 트립신호를 처리하는 복잡한 구조를 갖고 있다. 더구나 발전소 컴퓨터계통에서 3개의 SOE 프로세서로 동기신호가 전송될 때 이 신호와 발전소 컴퓨터 계통으로 전송되는 데이터와 충돌가능성이 매우 높다. 이러한 문제는 SOE 계통의 고장을 발생시켜 사고나 트립의 추이분석을 불가능하게 한다. 본 논문에서는 기존 SOE 계통의 제약사항을 검토하고 단일 프로세서를 갖는 새로운 SOE 계통을 제안한다. 그리고 제안된 SOE 계통에 대한 시험계통을 설계, 구현 및 시험하였다.

  • PDF

자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과 (Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System)

  • 김태완;추유림;번다리 디워스
    • 한국지진공학회논문집
    • /
    • 제23권3호
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

소형 풍력발전기를 이용한 교량의 공력성능 개선 및 에너지 생산 (Aerodynamic Retrofit of Bridge and Energy Harvesting by Small Wind Turbines)

  • 권순덕;이승호;이한규
    • 대한토목학회논문집
    • /
    • 제30권1A호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 연구에서는 소형 풍력발전기를 교량에 설치하여 전력생산과 아울러 내풍안정성을 개선할 수 있는 방안을 연구하였다. 이를 위하여 기존 공기역학적 진동억제 대책과 유사하게 교량에 풍력발전기를 설치하기 위한 방법과 풍력에너지 추정 방법을 제시하였다. 풍동실험 결과를 보면, 페어링처럼 소형 풍력발전기를 설치하면 와류진동을 거의 억제할 수 있는 것으로 나타났고, 이때 교축방향 최적 이격 거리는 터빈 직경의 3-4.5배인 것으로 나타났다. 그리고 풍력발전기를 설치하면 항력계수는 낮아지고 양력계수의 기울기도 음에서 양의 값으로 바뀌어 전반적인 내풍안정성이 향상되는 것으로 나타났다. 한편 풍하측의 풍력발전기는 평균풍속이 낮아 발전을 못하지만, 풍상측의 풍력발전기는 상당량의 전기에너지를 생산하는 것으로 나타났다.