• Title/Summary/Keyword: energy resolution

Search Result 1,088, Processing Time 0.028 seconds

Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo (가역 도약 마르코프 연쇄 몬테 카를로 방법을 이용한 물성 역산 기술 소개)

  • Hyunggu, Jun;Yongchae, Cho
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2022
  • Subsurface velocity is critical for the accurate resolution geological structures. The estimation of acoustic impedance is also critical, as it provides key information regarding the reservoir properties. Therefore, researchers have developed various inversion approaches for the estimation of reservoir properties. The Markov chain Monte Carlo method, which is a stochastic method, has advantages over the deterministic method, as the stochastic method enables us to attenuate the local minima problem and quantify the uncertainty of inversion results. Therefore, the Markov chain Monte Carlo inversion method has been applied to various kinds of geophysical inversion problems. However, studies on the Markov chain Monte Carlo inversion are still very few compared with deterministic approaches. In this study, we reviewed various types of reversible jump Markov chain Monte Carlo applications and explained the key concept of each application. Furthermore, we discussed future applications of the stochastic method.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

Diagnosis of the Transitional Disk Structure of AA Ori by Modeling of Multi-Wavelength Observations

  • Kim, Kyoung Hee;Kim, Hyosun;Lee, Chang Won;Lyo, Aran
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.2-42.2
    • /
    • 2020
  • We report on multi-wavelength observations of AA Ori, a Young Stellar Object in Orion-A star-forming region. AA Ori is known to have a pre-transitional disk based on infrared observations including Spitzer/IRS data. We construct its broadband spectral energy distribution (SED) by not only taking data in the optical and IR region but also including Herschel/PACS, JCMT/SCUBA, and SMA observational data. We use the Monte Carlo radiative transfer code (RADMC-3D) to reconstruct the SED with a viscous accretion disk model initialized by a radially continuous disk and finally having an inner and outer dusty disk separated by a dust-depleted radial gap. By comparing the model SEDs with different configurations of disk parameters, we discuss the limits to find a single solution of model parameters to fit the data. We suggest that some models with a modified inner disk surface density gradient and some degree of dust depletion in the inner disk can explain the AA Ori's SED, from which we infer that the inner disk of AA Ori has evolved. We present that model configurations of a pre-transitional disk with a large gap extended to 60-80 AU in a settled dusty disk of a few hundred AU size with a high inclination angle (~60°) also create model SEDs close to the observed one. To distinguish whether the disk has a just-opened narrow gap or a large gap, with an altered surface density of the inner disk extended to 10 AU, we suggest a further investigation of AA Ori with high angular resolution observations.

  • PDF

Systematic Literature Review of Smart Trade Contract Research (스마트 무역계약 연구의 체계적 문헌고찰)

  • Ho-Hyung Lee
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.243-262
    • /
    • 2023
  • This study provides a systematic review of smart trade contracts, examining the research trends and theoretical background of utilizing smart contracts and blockchain technology for the digitalization and automation of trade contracts. Smart trade contracts are a concept that applies the automated contract system based on blockchain to trade-related transactions. The study analyzes the technical and legal challenges and proposes solutions. The technical aspect covers the development of smart contract platforms, scalability and performance improvements of blockchain networks, and security and privacy concerns. The legal aspect addresses the legal enforceability of smart contracts, automatic execution of contract conditions, and the responsibilities and obligations of contract parties. Smart trade contracts have been found to have applications in various industries such as international trade, supply chain management, finance, insurance, and energy, contributing to the ease of trade finance, efficiency of supply chains, and business model innovation. However, challenges remain in terms of legal regulations, interaction with existing legal frameworks, and technological aspects. Further research is needed, including empirical studies, business model innovation, resolution of legal issues, security and privacy considerations, standardization and collaboration, and user experience studies to address these challenges and explore additional aspects of smart trade contracts.

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.

Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS) (다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링)

  • Kim, Sang-Wan;Kim, Donghan;Lee, Yoon-Kyung;Lee, Impyeong;Lee, Sangho;Kim, Junghoon;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.379-399
    • /
    • 2020
  • The detection of illegal ship is one of the key factors in building a marine surveillance system. Effective marine surveillance requires the means for continuous monitoring over a wide area. In this study, the possibility of ship detection monitoring based on satellite SAR, HF radar, UAV and AIS integration was investigated. Considering the characteristics of time and spatial resolution for each platform, the ship monitoring scenario consisted of a regular surveillance system using HFR data and AIS data, and an event monitoring system using satellites and UAVs. The regular surveillance system still has limitations in detecting a small ship and accuracy due to the low spatial resolution of HF radar data. However, the event monitoring system using satellite SAR data effectively detects illegal ships using AIS data, and the ship speed and heading direction estimated from SAR images or ship tracking information using HF radar data can be used as the main information for the transition to UAV monitoring. For the validation of monitoring scenario, a comprehensive field experiment was conducted from June 25 to June 26, 2019, at the west side of Hongwon Port in Seocheon. KOMPSAT-5 SAR images, UAV data, HF radar data and AIS data were successfully collected and analyzed by applying each developed algorithm. The developed system will be the basis for the regular and event ship monitoring scenarios as well as the visualization of data and analysis results collected from multiple platforms.

The Sensitivity Analysis according to Observed Frequency of Daily Composite Insolation based on COMS (관측 빈도에 따른 COMS 기반의 일 평균 일사량 산출의 민감도 분석)

  • Kim, Honghee;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sung, Noh-Hun;Lee, Darae;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.733-739
    • /
    • 2016
  • Insolation is an major indicator variable that can serve as an energy source in earth system. It is important to monitor insolation content using remote sensing to evaluate the potential of solar energy. In this study, we performed sensitivity analysis of observed frequency on daily composite insolation over the Korean peninsula. We estimated INS through the channel data of Communication, Ocean and Meteorological Satellite (COMS) and Cloud Mask which have temporal resolution of 1 and 3 hours. We performed Hemispherical Integration by spatial resolution for meaning whole sky. And we performed daily composite insolation. And then we compared the accuracy of estimated COMS insolation data with pyranometer data from 37 points. As a result, there was no great sensitivity in the daily composite INS by observed frequency of satellite that accuracy of the calculated insolation at 1 hour interval was $28.6401W/m^2$ and 3 hours interval was $30.4960W/m^2$. However, there was a great difference in the space distribution of two other INS data by observed frequency of clouds. So, we performed sensitivity analysis with observed frequency of clouds and distinction between the two other INS data. Consequently, there was showed sensitivity up to $19.4392W/m^2$.

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

Application of Resistivity Technique for Identifying Cavities Near Surface in Karst Area, Muan-gun, South of Korea (무안군 카르스트 지역의 지하공동 탐지를 위한 전기비저항 탐사 기술 적용)

  • Farooq, Muhammad;Park, Sam-Gyu;Song, Young-Soo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.368-372
    • /
    • 2008
  • This study evaluates the usefulness and capability of surface electrical resistivity technique for identifying the weak zones or subsurface cavities in karst area with limestone formation. Weak zones or cavities near surface can be potentially dangerous and several problems are associated with collapse of roads or buildings accompanied by subsidence phenomena. In this paper, both two and three dimensional resistivity investigation were conducted to investigate subsidence along a road in Yongweol-ri, Muan-gun, South Korea. The results of the resistivity survey using dipole-dipole array provide a clear view of the weathered regolith, the distribution of weak zones or cavities and bedrock. Several low resistivity areas were identified and subsequent drilling led to the discovery of several weak zone or clay-filled underground cavities. The drilling results show excellent correlation with the resistivity images. It is illustrated, the ability of electrical technique to produce high resolution images of subsurface, which are useful for subsidence assessment. Also the results of this study have demonstrated that two and three dimensional electrical resistivity surveys are useful for delineating the subsidence area. Based on resistivity imaging, the map of hazardous zone has been developed.

Investigation on Formation Behaviors of Synthesized Natural Gas Hydrates (합성 천연가스의 하이드레이트 형성 거동 연구)

  • Lee, Jong-Won;Lee, Ju-Dong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.890-893
    • /
    • 2012
  • Gas hydrates are solid crystal structures formed by enclathration of gaseous guest species into 3-dimensional lattice structure of hydrogen-bonded water molecules. These compounds can be potentially used as an energy storage/transportation medium because they can hold a large amount of gas in a small volume of the solid phase. In addition, huge amount of natural gas, buried in seabeds or permafrost region in the form of the solid hydrate, is regarded as a future energy source. In this study, synthesized natural gas, whose composition is 90.0 mol% of methane, 7.0 mol% of ethane, and 3.0 mol% of propane, was used to identify formation behaviors of natural gas hydrates for the purpose of applying the gas hydrate to a storage/transportation medium of natural gas. According to the experimental results obtained by means of the solid-state NMR and high-resolution powder XRD methods, it is found that formed natural gas hydrates have crystal structure of the structure-II hydrate, and that methane occupies both small and large cages, while the others only occupy large ones. In addition, both the NMR spectroscopy and the gas chromatograph showed that there exists preferential occupation among the natural gas components during the hydrate formation. Compositional changes after the hydrate formation revealed that the preferential occupation is in order of propane, ethane, and methane (propane is the most preferential guest species when forming natural gas hydrates).