• Title/Summary/Keyword: energy resolution

Search Result 1,083, Processing Time 0.034 seconds

A study of communication-based protection coordination for networked distribution system (네트워크 배전계통용 통신기반 보호협조에 관한 연구)

  • Kim, WooHyun;Chae, WooKyu;Hwang, SungWook;Lee, HakJu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2022
  • Although the distribution system has been structured as complicated as a mesh in the past, the connection points for each line are always kept open, so that it is operated as a radial distribution system (RDS). For RDS, the line utilization rate is determined according to the maximum load on the line, and the utilization rate is usually kept low. In addition, when a fault occurs in the RDS, a power outage of about 3 to 5 minutes occurs until the fault section is separated, and the healthy section is transferred to another line. To improve the disadvantages of the RDS, research on the construction of a networked distribution system (NDS) that linking multiple lines is in progress. Compared to the RDS, the NDS has advantages such as increased facility utilization, load leveling, self-healing, increased capacity connected to distributed generator, and resolution of terminal voltage drop. However, when a fault occurs in the network distribution system, fault current can flow in from all connected lines, and the direction of fault current varies depending on the fault point, so a high-precision fault current direction determination method and high-speed communication are required. Therefore, in this paper, we propose an accurate fault current direction determination method by comparing the peak value polarity of the fault current in the event of a fault, and a communication-based protection coordination method using this method.

ANALYSIS OF THIN FILM POLYSILICON ON GLASS SYNTHESIZED BY MAGNETRON SPUTTERING

  • Min J. Jung;Yun M. Chung;Lee, Yong J.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.68-68
    • /
    • 2001
  • Thin films of polycrystalline silicon (poly-Si) is a promising material for use in large-area electronic devices. Especially, the poly-Si can be used in high resolution and integrated active-matrix liquid-crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs) because of its high mobility compared to hydrogenated _amorphous silicon (a-Si:H). A number of techniques have been proposed during the past several years to achieve poly-Si on large-area glass substrate. However, the conventional method for fabrication of poly-Si could not apply for glass instead of wafer or quartz substrate. Because the conventional method, low pressure chemical vapor deposition (LPCVD) has a high deposition temperature ($600^{\circ}C-1000^{\circ}C$) and solid phase crystallization (SPC) has a high annealing temperature ($600^{\circ}C-700^{\circ}C$). And also these are required time-consuming processes, which are too long to prevent the thermal damage of corning glass such as bending and fracture. The deposition of silicon thin films on low-cost foreign substrates has recently become a major objective in the search for processes having energy consumption and reaching a better cost evaluation. Hence, combining inexpensive deposition techniques with the growth of crystalline silicon seems to be a straightforward way of ensuring reduced production costs of large-area electronic devices. We have deposited crystalline poly-Si thin films on soda -lime glass and SiOz glass substrate as deposited by PVD at low substrate temperature using high power, magnetron sputtering method. The epitaxial orientation, microstructual characteristics and surface properties of the films were analyzed by TEM, XRD, and AFM. For the electrical characterization of these films, its properties were obtained from the Hall effect measurement by the Van der Pauw measurement.

  • PDF

Purchase and Acquisition Order System for sharing on factory (공유 온 팩토리 서비스를 위한 수발주 시스템)

  • Youn-Kyoung Seo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.146-153
    • /
    • 2023
  • In accordance with the industrial convergence regulation sandbox decision promoted by the Ministry of Trade, Industry and Energy, the "machine tool sharing service in the factory" applied for by MyMaker Co., Ltd., an industry-academia cooperation company, was granted a demonstration exception. While implementing this, in a situation where the ordering service part had to be developed as software, the company's domain problems were identified and analyzed, procedures were established, and a system was designed that met the related requirements. As a joint research and development project to solve the difficulties of the LINC+ industry, the order-to-order system was finally developed for shared factory services. In accordance with the procedure and requirements analysis, the planning, design, prototyping, and implementation production stages were carried out. Finally, it was confirmed that the final development contents were well implemented according to the requirements, and the resolution of the difficulties was confirmed through functional verification demonstrations.

A Study on the Applicability of Unmanned Aerial Vehicles for Underwater Cultural Heritage Survey in Intertidal Zones (조간대에서의 수중문화재 조사를 위한 무인항공기의 적용 가능성에 관한 연구)

  • Young-Hyun Lee;Dong-Won Choi;Sang-Hee Lee;Sung-Bo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.697-703
    • /
    • 2023
  • Intertidal zones, akin to tidal flats, are among the potential areas where underwater cultural heritage might be submerged. However, the shallow depths in these regions present challenges for conventional vessel-based survey methods. Moreover, during low tides, intertidal zones transform into tidal flats, limiting the efficiency of survey efforts due to restricted access and potential risks. As a result, proper underwater cultural heritage surveys encounter difficulties in these environments. In recent times, extensive research is underway to address these issues by investigating underwater cultural heritage surveys in intertidal zones, encompassing diverse fields, including equipment-based investigations. This study aimed to explore the feasibility of utilizing unmanned aerial vehicles (UAVs) to conduct intertidal cultural heritage surveys, employing aerial photography and 3D mapping to create detailed orthoimages and 3D models. The study focused on assessing the potential application of these techniques for cultural heritage surveying within intertidal zones. Notably, the survey conducted in Jindo's Naesan-ri demonstrated high-resolution capabilities, enabling the distinction of actual pottery fragments mixed within gravel fields. Similarly, in the survey of Jindo's Byeokpa-hang, it was found that a wooden pillar structure existed in a section about 200m long. The integration of various sensors, including LiDAR, with UAVs allows for diverse investigation possibilities, including bathymetric measurements, and is expected to facilitate the acquisition of varied datasets for further research and assessment.

Modeling Soil Temperature of Sloped Surfaces by Using a GIS Technology

  • Yun, Jin I.;Taylor, S. Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.

  • PDF

Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo (가역 도약 마르코프 연쇄 몬테 카를로 방법을 이용한 물성 역산 기술 소개)

  • Hyunggu, Jun;Yongchae, Cho
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2022
  • Subsurface velocity is critical for the accurate resolution geological structures. The estimation of acoustic impedance is also critical, as it provides key information regarding the reservoir properties. Therefore, researchers have developed various inversion approaches for the estimation of reservoir properties. The Markov chain Monte Carlo method, which is a stochastic method, has advantages over the deterministic method, as the stochastic method enables us to attenuate the local minima problem and quantify the uncertainty of inversion results. Therefore, the Markov chain Monte Carlo inversion method has been applied to various kinds of geophysical inversion problems. However, studies on the Markov chain Monte Carlo inversion are still very few compared with deterministic approaches. In this study, we reviewed various types of reversible jump Markov chain Monte Carlo applications and explained the key concept of each application. Furthermore, we discussed future applications of the stochastic method.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

Diagnosis of the Transitional Disk Structure of AA Ori by Modeling of Multi-Wavelength Observations

  • Kim, Kyoung Hee;Kim, Hyosun;Lee, Chang Won;Lyo, Aran
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.2-42.2
    • /
    • 2020
  • We report on multi-wavelength observations of AA Ori, a Young Stellar Object in Orion-A star-forming region. AA Ori is known to have a pre-transitional disk based on infrared observations including Spitzer/IRS data. We construct its broadband spectral energy distribution (SED) by not only taking data in the optical and IR region but also including Herschel/PACS, JCMT/SCUBA, and SMA observational data. We use the Monte Carlo radiative transfer code (RADMC-3D) to reconstruct the SED with a viscous accretion disk model initialized by a radially continuous disk and finally having an inner and outer dusty disk separated by a dust-depleted radial gap. By comparing the model SEDs with different configurations of disk parameters, we discuss the limits to find a single solution of model parameters to fit the data. We suggest that some models with a modified inner disk surface density gradient and some degree of dust depletion in the inner disk can explain the AA Ori's SED, from which we infer that the inner disk of AA Ori has evolved. We present that model configurations of a pre-transitional disk with a large gap extended to 60-80 AU in a settled dusty disk of a few hundred AU size with a high inclination angle (~60°) also create model SEDs close to the observed one. To distinguish whether the disk has a just-opened narrow gap or a large gap, with an altered surface density of the inner disk extended to 10 AU, we suggest a further investigation of AA Ori with high angular resolution observations.

  • PDF

Systematic Literature Review of Smart Trade Contract Research (스마트 무역계약 연구의 체계적 문헌고찰)

  • Ho-Hyung Lee
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.243-262
    • /
    • 2023
  • This study provides a systematic review of smart trade contracts, examining the research trends and theoretical background of utilizing smart contracts and blockchain technology for the digitalization and automation of trade contracts. Smart trade contracts are a concept that applies the automated contract system based on blockchain to trade-related transactions. The study analyzes the technical and legal challenges and proposes solutions. The technical aspect covers the development of smart contract platforms, scalability and performance improvements of blockchain networks, and security and privacy concerns. The legal aspect addresses the legal enforceability of smart contracts, automatic execution of contract conditions, and the responsibilities and obligations of contract parties. Smart trade contracts have been found to have applications in various industries such as international trade, supply chain management, finance, insurance, and energy, contributing to the ease of trade finance, efficiency of supply chains, and business model innovation. However, challenges remain in terms of legal regulations, interaction with existing legal frameworks, and technological aspects. Further research is needed, including empirical studies, business model innovation, resolution of legal issues, security and privacy considerations, standardization and collaboration, and user experience studies to address these challenges and explore additional aspects of smart trade contracts.

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.