• Title/Summary/Keyword: energy recovery system

Search Result 567, Processing Time 0.032 seconds

A Control Strategy for Flywheel Energy Storage / Recovery System with Induction Machine (유도 전동기를 이용한 플라이휠 에너지 저장 및 재생 시스템 제어 기법)

  • Son J.K.;Chun T.W.;Choi G.J.;Nho E.C.;Kim H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.128-132
    • /
    • 2004
  • This paper proposed a control strategy for flywheel energy/recovery system with induction machine. The system is based on a vector controlled induction machine driving a flywheel and address the problem of regulating the DC-Link system voltage against input power shut-down. And we proposed the method to damp the oscillation of DC-Link. Experimental results are presented which verify the performance of the strategy.

  • PDF

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.

Development and Reliability Optimization of Economic Analysis Module for Power Generation System from Industrial Waste Heat Recovery (산업폐열 발전시스템 경제성분석 모듈 개발 및 신뢰성 최적화)

  • Ko, Areum;Park, Sungho;Kim, Joon-Young;Cha, Jae-Min
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The issue of global warming and environmental pollutant has become an international concern due to the widespread use of fossil fuels, and thus waste heat recovery technologies has become important to improve energy utilization. The global market of power generation system using industrial waste heat is rapidly growing at an average rate of 5% due to its advantage of increasing energy efficiency. In order to design an optimal waste heat recovery system, it is necessary to develop a program that offers economic evaluation of each power generating technology according to the heat source conditions. In this paper, the economic analysis module to calculate LCOE is developed and verified the reliability against NETL economic analysis results. As a result of the verification, the error rate is about 6 ~ 7%, which satisfy the accuracy for business feasibility evaluation. In order to enhance the reliability, the module was improved by applying the levelization method used by NETL. As a result of the verification of reliability, the error rate is less than 1% and the accuracy is improved.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

The Characteristics of Seawater RO Membrane for High Recovery System (해수담수화용 역삼투막의 고회수율 공정에서의 투과 특성)

  • 김노원
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.182-191
    • /
    • 2002
  • Polyamide reverse osmosis (RO) membrane with thin film composite structure was commercialized for seawater desalination process. Recently, it has been reported that some RO processes for high pressure and recovery leads to reducing in energy cost and pretreatment scale compared with earlier process. The development of energy recovery, pumping device and RO elements with high pressure and rejection made high pressure and recovery process possible. In this study, permeation properties of commercialized seawater RO membrane were investigated under the condition of high pressure and recovery. In the RO sheet membrane test 3.5% NaCl of synthetic seawater was used. The synthetic seawater contained only sodium chloride. In the RO module test, natural seawater was used at Happo Bay, Masan city. As the results, RO membrane with high durability of pressure was better than that with high rejection of seawater for high pressure and recovery process. Seawater rejection of high concentrate tends to be improved by high pressure operation.

A Study on the Circuit Composition and Characteristics Analysis for Heavy-Duty Vehicular Hybrid Hydraulic Driving System (대형 자동차 하이브리드 유압 구동시스템의 회로구성과 특성해석에 관한 연구)

  • 이재구;이재천;한문식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.197-204
    • /
    • 2004
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. Also accumulator tests were conducted for different load mass and motor speed. A series of test work were carried out in the laboratory and the dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, were investigated in both brake action and acceleration action and these results show that the proposed design is effective for decision accumulator volume in ERBS.

A Study on the Application of Disaster Management System for Business Area (기업에서 재난관리시스템 활용에 관한 연구)

  • Oh, Se-Jung;Kim, Chan-O
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.132-136
    • /
    • 2013
  • Even though most of domestic corporations are doing various activities to reduce disasters, it is true that those are actually limited to some parts of business or the formalities in order to obtain specific certificates. For that reason, this writer study a efficient utilization of a guideline about accident provision and business continuity management for less disasters of companies, prevent interruption of critical mission. In short, it is required to operate an effective disaster recovery system and safety management system integrated by a mutual recognition on the relevant parts and different parts. And there is a need to establish a integrated recovery center in order to manage disaster recovery system realistic and effective.

Evaluation of energy consumption of gas hydrate and reverse osmosis hybrid system for seawater desalination (해수담수화 공정을 위한 가스하이드레이트-역삼투 공정의 에너지 소모량 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • Gas hydrate desalination process is based on a liquid to solid (Gas Hydrate, GH) phase change followed by a physical process to separate the GH from the remaining salty water. The GH based desalination process show 60.5-90% of salt rejection, post treatment like reverse osmosis (RO) process is needed to finally meet the product water quality. In this study, the energy consumption of the GH and RO hybrid system was investigated. The energy consumption of the GH process is based on the cooling and heating of seawater and the heat of GH formation reaction while RO energy consumption is calculated using the product of pressure and flow rate of high pressure pumps used in the process. The relation between minimum energy consumption of RO process and RO recovery depending on GH salt rejection, and (2) energy consumption of electric based GH process can be calculated from the simulation. As a result, energy consumption of GH-RO hybrid system and conventional seawater RO process (with/without enregy recovery device) is compared. Since the energy consumption of GH process is too high, other solution used seawater heat and heat exchanger instead of electric energy is suggested.

Study on the Heat Recovery System in Series Hybrid Electric Vehicle (직렬형 하이브리드 자동차에서의 폐열 회수에 대한 연구)

  • Jung, Daebong;Yong, Jinwoo;Kim, Minjae;Kim, Hyoungjun;Min, Kyoungdoug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.95-95
    • /
    • 2010
  • In recent, there are tremendous requirements to improve the fuel economy of vehicle. For satisfaction of requirements, Hybrid Electric Vehicle or other technologies are suggested and implemented. However, it should be noted that almost 35% energy loss is occurred in the shape of exhaust gas as ever. For increase the efficiency of vehicle, it is certain that the exhaust gas energy should be recover, and generate energy. In previous studies, the technologies such as turbo-compound, thermoelectric and rankine cycle are suggested to recover the exhaust heat energy in vehicle. But, they focus on the conventional vehicle or parallel Hybrid Electric Vehicle. Series Hybrid Electric Vehicle has advantage that the engine and drive shaft are de-coupled. It means that the engine can be operated in high efficiency area regardless with vehicle states. Therefore, if rankine cycle is applied to series hybrid electric vehicle, operating condition of that becomes almost steady. So, in this study, theoretical analysis on the efficiency of rankine cycle applied to series hybrid electric city bus is carried and the energy recovered from exhaust gas during vehicle drive cycle is calculated.

  • PDF