• Title/Summary/Keyword: energy ratios

Search Result 1,362, Processing Time 0.026 seconds

EFFECTS OF MECHANICAL PROPERTY VARIABILITY IN LEAD RUBBER BEARINGS ON THE RESPONSE OF SEISMIC ISOLATION SYSTEM FOR DIFFERENT GROUND MOTIONS

  • Choun, Young-sun;Park, Junhee;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.605-618
    • /
    • 2014
  • The effects of variability of the mechanical properties of lead rubber bearings on the response of a seismic isolation system are investigated. Material variability in manufacturing, aging, and operation temperature is assumed, and two variation models of an isolation system are considered. To evaluate the effect of ground motion characteristics on the response, 27 earthquake record sets with different peak A/V ratios were selected, and three components of ground motions were used for a seismic response analysis. The response in an isolation system and a superstructure increases significantly for ground motions with low A/V ratios. The variation in the mechanical properties of isolators results in a significant influence on the shear strains of the isolators and the acceleration response of the superstructure. The variation provisions in the ASCE-4 are reasonable, but more strict variation limits should be given to isolation systems subjected to ground motions having low A/V ratios. For application of seismic isolation systems to safety-related nuclear structures, the variation in the material and mechanical properties of the isolation system should be properly controlled during the manufacturing and aging processes. In addition, special consideration should be given to minimize the accidental torsion caused by the dissimilarity in the stiffness variations of the isolators.

Application of Nonlinear Dynamics and Wavelet Theory for Discharge and Water Quality Data in Youngsan River Basin (영산강 유역의 유출량 및 수질자료에 대한 비선형 동역학과 웨이블렛 이론의 적용)

  • Oh, Chang-Ryeol;Jin, Young-Hoon;Park, Sung-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.551-560
    • /
    • 2007
  • The present study analyzed noise reduction and long/short-term components for discharge, TOC concentration, and TOC load data in order to understand the data characteristics better. For the purpose, wavelet transform which can reduce noise from raw data and has flexible resolution in time and frequency domain was applied and the theory of nonlinear dynamics was also used to determine the last decomposition level for wavelet transform. Wavelet function of 'db10' and the 7th level for the last decomposition of wavelet transform were applied for the all data in the present study. Also the results revealed that the energy ratios of approximation components with 187-hour periodicity decomposed from 7th level of wavelet transform were 94.71% (discharge), 99.00% (TOC concentration), and 93.84% (TOC load), respectively. In addition, the energy ratios of detail components showed the range between 1.00% and 6.17%, which were extremely small comparing to the energy ratios of approximation components, therefore, the first and second detail components might be considered as noise components included in the raw data.

Chest compression quality, exercise intensity, and energy expenditure during cardiopulmonary resuscitation using compression-to-ventilation ratios of 15:1 or 30:2 or chest compression only: a randomized, crossover manikin study

  • Kwak, Se-Jung;Kim, Young-Min;Baek, Hee Jin;Kim, Se Hong;Yim, Hyeon Woo
    • Clinical and Experimental Emergency Medicine
    • /
    • v.3 no.3
    • /
    • pp.148-157
    • /
    • 2016
  • Objective Our aim was to compare the compression quality, exercise intensity, and energy expenditure in 5-minute single-rescuer cardiopulmonary resuscitation (CPR) using 15:1 or 30:2 compression-to-ventilation (C:V) ratios or chest compression only (CCO). Methods This was a randomized, crossover manikin study. Medical students were randomized to perform either type of CPR and do the others with intervals of at least 1 day. We measured compression quality, ratings of perceived exertion (RPE) score, heart rate, maximal oxygen uptake, and energy expenditure during CPR. Results Forty-seven students were recruited. Mean compression rates did not differ between the 3 groups. However, the mean percentage of adequate compressions in the CCO group was significantly lower than that of the 15:1 or 30:2 group ($31.2{\pm}30.3%$ vs. $55.1{\pm}37.5%$ vs. $54.0{\pm}36.9%$, respectively; P<0.001) and the difference occurred within the first minute. The RPE score in each minute and heart rate change in the CCO group was significantly higher than those of the C:V ratio groups. There was no significant difference in maximal oxygen uptake between the 3 groups. Energy expenditure in the CCO group was relatively lower than that of the 2 C:V ratio groups. Conclusion CPR using a 15:1 C:V ratio may provide a compression quality and exercise intensity comparable to those obtained using a 30:2 C:V ratio. An earlier decrease in compression quality and increase in RPE and heart rate could be produced by CCO CPR compared with 15:1 or 30:2 C:V ratios with relatively lower oxygen uptake and energy expenditure.

Effects of the partial admission rate and cold flow inlet-outlet ratio on energy separation of Vortex Tube (Vortex Tube의 부분유입율과 저온 입.출구비가 에너지분리 특성에 미치는 영향)

  • 김정수;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.51-59
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner for special purpose. The phenomena of energy separation through the vortex tube were investigated to see the effects of cold flow inlet-outlet ratios and partial admission rates on the energy separation experimentally. The experiment was carried out with various cold flow inlet-outlet ratios from 0.28 to 10.56 and partial admission rates from 0.176 to 0.956 by varying input pressure and cold air flow ratio. To find best use in a given cold flow inlet-outlet ratio and partial admission rate, the maximum temperature difference of cold air was presented. The experimental results were indicated that there are an optimum range of cold flow inlet-outlet ratio for each partial admission rate and available partial admission rate.

  • PDF

A Conformational Study of Oligosaccharides Investigated by Tandem Mass Spectrometry and Molecular Modeling

  • Eunsun Yoo Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.293-297
    • /
    • 2001
  • The purpose of this paper is to introduce the simplified linkage position determination method using tandem mass spectrometry combined with molecular modeling study. Using low energy tandem mass spectrometric experiments and molecular modeling, it has been suggested that significant differences in glycosidic bond cleavage may occur due not only to ionic considerations but also may have contributions from steric hindrance of the absorbance of collision energy, leading to a statistically higher bond cleavage for sterically crowded linkages. Permethylated derivatives of the linkage-isomeric trisaccharides give useful fragmentation ratios and productions, including a 3-linkage specific ion. The ratios of fragment ions are related to the ability of each linkage position in the oligosaccharide to absorb collisional energy.

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels

  • Lee, Jeongmook;Park, Jai Il;Youn, Young-Sang;Ha, Yeong-Keong;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.645-650
    • /
    • 2017
  • This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode (아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

Effects of Dietary Energy Concentration and Lysine on the Digestible Energy Ratio for Apparent Amino Acid Digestibility in Finishing Barrows

  • Cho, S.B.;Lee, H.J.;Chung, I.B.;Long, H.F.;Lim, J.S.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.232-236
    • /
    • 2008
  • This experiment was performed to investigate the effects of two energy levels and four lysine:digestible energy (DE) ratios on the apparent digestibility of nutrients in finishing pigs. The experiment was conducted using a $2{\times}4$ randomized complete block (RCB) design with three replicates. Twenty-four cross-bred finishing barrows ((Landrace${\times}$Yorkshire)${\times}$Duroc) with an average body weight of $64.2{\pm}0.69kg$ were assigned to one of eight treatments. Each barrow was placed in an individual metabolism crate and dietary treatment and water was provided ad libitum. Diets were designed to contain lysine:ME ratios of 1.5, 1.8, 2.1 and 2.4 g/Mcal at 3.35 and 3.6 Mcal/kg of diet in a $4{\times}2$ factorial arrangement. Dry matter (DM), ash, Ca and P digestibility were not affected by energy density or lysine:DE ratios. Crude fat digestibility increased as the energy density increased from 3.35 to 3.6 Mcal of DE/kg. Increasing the lysine:DE ratio also increased crude protein digestibility. There were no interactions between energy density and lysine:DE ratio in terms of nutrient digestibility. Nitrogen excretion via feces was not affected by energy density and lysine:DE ratio, while nitrogen excretion via urine was significantly affected by energy density and lysine:DE ratio. The apparent digestibility of all amino acids except for isoluecine, arginine and aspartic acid as well as average values of essential amino (EAA), non-essential amino acids (NEAA) and total amino acid digestibility (p>0.05) were not affected by energy density. The apparent digestibility of all amino acids except for leucine, proline, alanine and tyrosine, NEAA and total amino acid digestibility were significantly affected by lysine: DE ratio (p<0.05). Interactive effects of energy and lysine:DE ratio also significantly affected amino acid digestibility except for isoleucine, alanine, cystine, leucine, phenylalanine, glutamine and proline (p<0.05). In conclusion, these results suggest that maintaining the appropriate lysine:DE ratio becomes more important as the energy density of the diet increases. Consequently, increasing the lysine:DE ratio can result in increased crude protein digestibility and urinary nitrogen excretion, although apparent protein digestibility and nitrogen excretion were not affected by energy density Furthermore, increasing the lysine:DE ratio also increased the apparent digestibility of essential amino acids, except for leucine, regardless of energy density. The optimum lysine:DE ratio for maximum essential amino acid digestibility of the $64.2{\pm}0.69kg$ pig is approximately 2.4 g of lysine/Mcal of DE.

Effect of Ni/Fe Ion Concentration Ratio on Fuel Cladding Crud Deposition (핵연료 피복관 부식생성물 부착에 관한 Ni/Fe 이온 농도비의 영향)

  • Baek, S.H.;Kim, U.C.;Shim, H.S.;Lim, K.S.;Hur, D.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • The objectives of this study are to investigate the effect of the concentration ratios of Ni and Fe ions on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the Ni and Fe concentration ratios of 20:20 ppm, 39:1 ppm and 1:39 ppm at $325^{\circ}C$ for 14 days. In the case of the same Ni and Fe ion ratio (20:20), nickel ferrite with a polyhedral shape was formed. Nickel oxide deposits with a needle shape were formed in the condition of high Ni to Fe ion ratio (39:1), While polyhedral iron oxide and needle-like nickel oxide formed in the condition of low Ni to Fe ion ratio (1:39). The amount of deposits increased, when Fe oxides were formed. This indicates that Fe rich oxides stimulated Ni oxide deposition.