A set of prediction equations to estimate the nitrogen-corrected apparent metabolizable energy (AMEn) of individual ingredients and diets used in the poultry feed industry was evaluated. The AMEn values of three energy ingredients (maize, sorghum and defatted maize germ meal), four protein ingredients (soybean meal, maize gluten meal 60% crude protein, integral micronized soy and roasted whole soybean) and four diets (three containing four feedstuffs, complex diets, and one containing only corn-soybean meal, basal diet) were determined using a metabolism assay with male broilers from 1 to 7, 8 to 21, 22 to 35, and 36 to 42 days old. These values were compared to the AMEn values presented in the tables of energy composition or estimated by equation predictions based on chemical composition data of feedstuffs. In general, the equation predictions more precisely estimated the AMEn of feedstuffs when compared to the tables of energy composition. The equation AMEn (dry matter [DM] basis) = 4,164.187+51.006 ether extract (% in DM basis)-197.663 ash-35.689 crude fiber (% in DM basis)-20.593 neutral detergent fiber (% in DM basis) ($R^2=0.75$) was the most applicable for the prediction of the energy values of feedstuffs and diets used in the poultry feed industry.
Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su;Choi, Se-Jin;Jang, Jong-Ho;Kang, Yong-Sik
Journal of the Korea Institute of Building Construction
/
v.2
no.4
/
pp.177-182
/
2002
The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.
The external conditions for estimating dynamic wind loads of wind turbines, such as the turbulence, the extreme wind, the mean velocity gradients and the flow angles, are simulated over GangWon Wind Energy Test Field placed in one of the most complex terrain in Korea. Reference meteorological data has been gathered at a height of 30m from 2003 to 2004 with a ultrasonic anemometer. The absolute value of the spectral energy are simulated and the verification of this prediction has been carried out with comparing to the experimental data. The most desirable place for constructing new wind turbine are resulted as Point 2 and Point 3 due to the lower value of Turbulence Intensity and the higher value of wind resource relatively.
International conference on construction engineering and project management
/
2015.10a
/
pp.723-727
/
2015
Building energy use estimation relies on building characteristics, its energy systems, occupants, and weather. Energy estimation of new buildings is considerably an easy task when compared to modeling existing buildings as they require calibration with actual data. Particularly, when energy estimation of existing building stock is warranted at a city-scale, the problem is exacerbated owing to lack of construction drawings and other engineering specifications. However, as collection of buildings and other infrastructure constitute cities, such predictions are a necessary component of developing and maintaining sustainable cities. This paper uses Artificial Neural Network techniques to predict electricity consumption for residential buildings situated in the City of Gainesville, Florida. With the use of 32,813 samples of data vectors that comprise of building floor area, built year, number of stories, and range of monthly energy consumption, this paper extends the prediction to environmental impact assessment of electricity usage at the urban-scale. Among others, one of the applications of the proposed model discussed in this paper is the study of urban scale Life Cycle Assessment, and other decisions related to creating sustainable cities.
A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.
Objective: The current study analysed the relationships between methane ($CH_4$) output from animal and dietary factors. Methods: The dataset was obtained from 159 Dorper${\times}$thin-tailed Han lambs from our seven studies, and $CH_4$ production and energy metabolism data were measured in vivo by an opencircuit respiratory method. All lambs were confined indoors and fed pelleted diet during the whole experimental period in all studies. Data from two-thirds of lambs were used to develop linear and multiple regressions to describe the relationship between $CH_4$ emission and dietary variables, and data from the remaining one third of lambs were used to validate the established models. Results: $CH_4$ emission (g/d) was positively related to dry matter intake (DMI) and gross energy intake (GEI) (p<0.001). $CH_4$ energy/GEI was negatively related to metabolizable energy/gross energy and metabolizable energy/digestible energy (p<0.001). Using DMI to predict $CH_4$ emission (g/d) resulted in a coefficient of determination ($R^2$) of 0.80. Using GEI, digestible energy intake, and metabolizable energy intake predict $CH_4$ energy/GEI resulted in a $R^2$ of 0.92. Conclusion: the prediction equations established in the current study are useful to develop appropriate feeding and management strategies to mitigate $CH_4$ emissions from sheep.
Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.
Kim, Jae-Hee;Kim, Myung-Hee;Kim, Gwi-Sun;Park, Ji-Sun;Kim, Eun-Kyung
Nutrition Research and Practice
/
v.9
no.4
/
pp.370-378
/
2015
BACKGROUND/OBJECTIVES: Athletes generally desire changes in body composition in order to enhance their athletic performance. Often, athletes will practice chronic energy restrictions to attain body composition changes, altering their energy needs. Prediction of resting metabolic rates (RMR) is important in helping to determine an athlete's energy expenditure. This study compared measured RMR of athletic and non-athletic adolescents with predicted RMR from commonly used prediction equations to identify the most accurate equation applicable for adolescent athletes. SUBJECTS/METHODS: A total of 50 athletes (mean age of $16.6{\pm}1.0years$, 30 males and 20 females) and 50 non-athletes (mean age of $16.5{\pm}0.5years$, 30 males and 20 females) were enrolled in the study. The RMR of subjects was measured using indirect calorimetry. The accuracy of 11 RMR prediction equations was evaluated for bias, Pearson's correlation coefficient, and Bland-Altman analysis. RESULTS: Until more accurate prediction equations are developed, our findings recommend using the formulas by Cunningham (-29.8 kcal/day, limits of agreement -318.7 and +259.1 kcal/day) and Park (-0.842 kcal/day, limits of agreement -198.9 and +196.9 kcal/day) for prediction of RMR when studying male adolescent athletes. Among the new prediction formulas reviewed, the formula included in the fat-free mass as a variable [$RMR=730.4+15{\times}fat-free\;mass$] is paramount when examining athletes. CONCLUSIONS: The RMR prediction equation developed in this study is better in assessing the resting metabolic rate of Korean athletic adolescents.
JSTS:Journal of Semiconductor Technology and Science
/
v.16
no.2
/
pp.251-254
/
2016
An energy-efficient object matching accelerator is proposed for mobile object recognition based on matching prediction scheme. Conventionally, vocabulary tree has been used to save the external memory bandwidth in object matching process but involved massive internal memory transactions to examine each object in a database. In this paper, a novel object matching accelerator is proposed based on matching predictions to reduce unnecessary internal memory transactions by mitigating non-target object examinations, thereby improving the energy-efficiency. Experimental results show a 26% reduction in power-delay product compared to the prior art.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.