• Title/Summary/Keyword: energy outage

Search Result 127, Processing Time 0.022 seconds

Production of SCC Flaws and Evaluation Leak Behavior of Steam Generator Tubes (누설 및 파열실험용 SCC 결함 전열관 제작 및 누설거동 평가)

  • Hwang, Seong-Sik;Jung, Man-Kyo;Park, Jang-Yul;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.188-192
    • /
    • 2009
  • A forced outage due to a steam generator tube leak in a Korean nuclear power plant was reported.1) Primary water stress corrosion cracking has occurred in many tubes in the plant, and they were repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to understand the leak behavior of the tubes containing stress corrosion cracks. Stress corrosion cracks were developed in 0.1 M sodium tetrathionate solution at room temperature. Steam generator(SG) tubes with short cracks were successfully fabricated with a restricted solution contact method. The leak rates of the degraded tubes were measured at room temperature. Some tubes with 100 % through wall cracks showed an increase of leak rate with time at a constant pressure.

Optimal Power Splitting for Wireless Energy and Information Transfer in Amplify-and-Forward Two-Way Relaying (증폭-후-전달 양방향 릴레이에서 무선 에너지 정보 전송을 위한 최적 전력 분할)

  • Do, Thinh Phu;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.175-177
    • /
    • 2016
  • This letter considers wireless energy and information transfer for an amplify-and-forward two-way relay network. When the relay harvests the energy and transfers the information signal through power splitting, the optimal power splitting minimizing the outage probability is derived explicitly and its gain is confirmed by simulations.

Nonorthogonal multiple access multiple input multiple output communications with harvested energy: Performance evaluation

  • Toi Le-Thanh;Khuong Ho-Van
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.432-445
    • /
    • 2024
  • This paper demonstrates improved throughput and energy efficiency of wireless communications by exploiting nonorthogonal multiple access (NOMA), multiple input-multiple output (MIMO), and radio frequency energy harvesting (EH) technologies. To assess the performance of NOMA MIMO communications with EH (MMe), we consider the nonlinear characteristics of EH devices and propose explicit expressions for throughput and outage probability. Based on our results, the system performance is significantly mitigated by EH nonlinearity and is considerably improved by increasing the number of antennas. Additionally, by appropriately adjusting the system parameters, our NOMA MMe innovation can avert complete outages while optimizing system performance. Moreover, the results demonstrate the superiority of the NOMA MMe over its orthogonal multiple access MMe counterparts.

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

Determination of Effective Relay Candidates for the Best Relay Selection in Wireless Systems in the Presence of Interference (간섭이 존재하는 무선 시스템에서 최적의 중계 노드 선택을 위한 효과적인 중계 노드 후보 결정 방법 연구)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2812-2817
    • /
    • 2013
  • In this paper, an outage probability for the best relay selection in decode-and-forward relaying systems in the presence of interference is analyzed over Rayleigh fading channels. Based on the outage performance results, we propose a method to determine effective relay candidates for the best relay selection, where the effective relay candidates represent the relays except for relays that make no contribution to improving the performance. in all possible relays given in the system. By determining the effective relay candidates, the feedback overhead of channel state information and the energy consumption of relays can be significantly reduced while minimizing the performance degradation. In this paper, we provide important parameters that affect the determination of the effective relay candidates.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Analytical Insights far Improving Technical Specifications from a Risk Perspective

  • Kim, Inn-Seock;Ryu, Yong-Ho;Do, Kyu-Sik;Shin, Won-Ky
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.568-573
    • /
    • 1995
  • Technical Specifications (TSs) for a nuclear power plant is an important licensing document which defines various operational requirements or conditions. Recently, many researchers have evaluated the risk impacts associated with the TS requirements, using probabilistic safety assessments becoming widely available. This paper presents insights gained km our review of recent risk-based analyses of TSs, focussing on surveillance requirements and AOT (allowed outage time) requirements.

  • PDF

Reliability Analysis of AC traction System Substation by using Bayes' Theory (베이즈 이론을 이용한 교류전철변전소의 신뢰도 분석)

  • Kim, Yong-Hyun;Koo, Bon-Hui;Cha, Jun-Min;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.445-450
    • /
    • 2008
  • The primary role of traction power systems is to provide reliable and continuous electrical energy to satisfy traction loads. AC traction substation transforms power from generation company and supply the power to the electric railway power line. Forced outage rate(FOR) of the equipment of substation should be used in the evaluation. This paper proposes the fast and easy way to evaluate by using Bayes' theory when a new equipment is added to the existing substation facility.

  • PDF

A Study on Outage Probability Analysis of HVDC Converter Considering Spare Elements (HVDC 변환소의 여유요소(Spare)를 고려한 사고확률 분석에 관한 연구)

  • Oh, Ungjin;Choi, Jaeseok;Kim, Chan-Ki;Yoon, Yongbeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1408-1414
    • /
    • 2018
  • Recently, as a solution to the problem of maintaining system reliability, stability, and quality occurring worldwide, such as activation of smart grid and recognition of super grid and rapid grid interconnection of renewable energy sources HVDC(High Voltage Direct Current) will appear on the front of the electric power system. These concepts are also very important concepts in HVDC systems. When the HVDC system is linked to the existing power system, it is composed of AC/DC/AC conversion device, and these conversion devices are composed of many thyristors. These parts(Devices) are connected in a complicated manner, and they belong to the one with a higher failure rate. However, the problem of establishing the concept of failure rate of HVDC parts directly linked to economic efficiency and the understanding accompanying it are still insufficient. Therefore, in this paper, we establish the meaning of reliability in power system and try to develop a model to analyze and verify the failure rate data of HVDC based on this.