• Title/Summary/Keyword: energy outage

Search Result 127, Processing Time 0.034 seconds

Energy Outage Probability and Achievable Throughput of 2-Channel Sensing Secondary Users in RF Powered Cognitive Radio Networks (RF 충전 인지 무선 네트워크에서 2-채널 센싱 2차 사용자의 Energy Outage 확률 및 패킷 전송 성능)

  • Wu, Shanai;Shin, Yoan;Kim, Dong In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1044-1053
    • /
    • 2016
  • In this paper, we consider the secondary users (SUs) who are capable of harvesting energy from ambient radio frequency (RF) signals and are allowed to sequentially sense up to 2 different channels to find out idle channels not occupied by the primary users (PUs). The EH SUs are permitted to transmit data packets only if both idle channels and sufficient energy are available. Compared with traditional SUs, the EH SUs consume energy with data transmission and also harvest energy without additional energy supply. Consequently, the battery state is expected to be fluctuated due to energy consumption and harvesting, and therefore we develop a Markov battery model to provide energy variations at the 2-channel sensing EH SUs. With the proposed battery model, we derive the steady-state probability that the EH SUs completely run out of energy, and the achievable throughput of EH SUs is derived accordingly. To evaluate the proposed Markov battery model, the Monte-Carlo simulation was performed to validate the accuracy of energy outage probability and achievable throughput at the 2-channel sensing EH SUs.

The Effect of an Aggressive Cool-Down Following A Refueling Outage Accident in which a Pressurizer Safety valve is Stuck Open

  • Lim, Ho- Gon;Park, Jin-Hee;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.497-511
    • /
    • 2004
  • A PSV (pressurizer safety valve) popping test carried out in the early phases of a refueling outage may trigger a test-induced LOCA(loss of coolant accident) if a PSV fails to fully close and is stuck in a partially open position. According to a KSNP (Korea standard nuclear power plant) low power and shutdown PSA (probabilistic safety assessment), the failure of a high pressure safety injection (HPSI) accompanied by the failure of a PSV to fully close was identified as a dominant accident sequence with a significant impact on low power and shutdown risks (LPSR). In this study, we aim to investigate and verify a new means for mitigating this type of accident using a thermal-hydraulic analysis. In particular, we explore the applicability of an aggressive cool-down combined with operator actions. The results of the various sensitivity studies performed there will help reduce LPSR and improve Refueling outage safety.

Assessment of Reliability in the Distribution System of an Industrial Complex

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.201-207
    • /
    • 2007
  • As the power industry moves towards open competition, there has been a need for methodology to evaluate distribution power system reliability by using customer interruption costs, particularly in power supply zones under the competitive electricity market. This paper presents an algorithm to evaluate system average interruption duration index, expected energy not supplied, and system outage cost taking into consideration failure rate of the distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, the distribution arrangement of a dual supply system consisting of mostly high voltage customers in an industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index, and expected energy not supplied in the sample industrial complex area are shown in detail.

Energy Efficiency Analysis of Cellular Downlink Transmission with Network Coding over Rayleigh Fading Channels

  • Zhu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.446-458
    • /
    • 2013
  • Recently, energy-efficient cellular transmission has received considerable research attention to improve the energy efficiency of wireless communication. In this paper, we consider a cellular network consisting of one base station (BS) and multiple user terminals and explore the network coding for enhancing the energy efficiency of cellular downlink transmission from BS to users. We propose the network coded cellular transmission scheme and conduct its energy consumption analysis with target outage probability and data rate requirements in Rayleigh fading environments. Then, the energy efficiency in Bits-per-Joule is further defined and analyzed to evaluate the number of bits delivered per Joule of energy cost. Numerical results show that the network coded cellular transmission significantly outperforms the traditional cellular transmission in terms of energy efficiency, implying that given a Joule of energy cost, the network coded cellular transmission scheme can deliver more bits than the traditional cellular transmission.

Outage Rate Calculating Method of Energy Storage System for the Application on Power System Operation (전력계통 운영적용을 위한 전기저장장치 고장률 산정방안)

  • Song, Seung-Heon;Choi, Woo-Yeong;Kook, Kyung-Soo
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.188-192
    • /
    • 2019
  • As the contribution of the Energy Storage System (ESS) on the power system operations has increased, it is required to secure the reliability on the capacity of ESS and this needs to consider the outage rate in calculating the available capacity of ESS. However, the existing method of calculating the outage rate does not consider the configuration of ESS and this does not accurately calculate the available capacity of ESS. For this, this paper analyzes the structural characteristics of ESS in Korean power system and proposes a method to calculate the outage rate of ESS. Through the study cases adopting the Korea Electric Power Corporation (KEPCO) ESS for providing the frequency response service, the effectiveness of the proposed method verified.

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

Distributed Multi-Hop Relay Scheme to Reduce Delay-Constrained Broadcast Outage Probability (전달 시간 제한이 있는 브로드캐스트 아웃티지 확률을 감소시키는 분산적인 다중 홉 중계 기법)

  • Ko, Byung Hoon;Byun, Ilmu;Rhee, Duho;Jeon, Ki Jun;Kim, Beom Mu;Lee, Seong Ro;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.219-226
    • /
    • 2013
  • Distributed multi-hop relay scheme to reduce delay-constrained outage probability for broadcast network is proposed. We consider multi-hop relay scheme, which is similar to distributed beamforming, where multiple nodes simultaneously relay packets, and we propose channel access control and power control for relaying nodes to satisfy energy constraint. Compared with flooding which is multi-hop relay scheme used for ZigBee, the proposed scheme is better in terms of outage probability and average reception throughput.

Performance Analysis of Nonlinear Energy-Harvesting DF Relay System in Interference-Limited Nakagami-m Fading Environment

  • Cvetkovic, Aleksandra;Blagojevic, Vesna;Ivanis, Predrag
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • A decode-and-forward system with an energy-harvesting relay is analyzed for the case when an arbitrary number of independent interference signals affect the communication at both the relay and the destination nodes. The scenario in which the relay harvests energy from both the source and interference signals using a time switching scheme is analyzed. The analysis is performed for the interference-limited Nakagami-m fading environment, assuming a realistic nonlinearity for the electronic devices. The closed-form outage probability expression for the system with a nonlinear energy harvester is derived. An asymptotic expression valid for the case of a simpler linear harvesting model is also provided. The derived analytical results are corroborated by an independent simulation model. The impacts of the saturation threshold power, the energy-harvesting ratio, and the number and power of the interference signals on the system performance are analyzed.

Area Annual Outage Cost Assessment of KEPCO System by TRELSS (TRELSS를 이용한 KEPCO 계통의 공급지장비 추정연구)

  • Shi, Bo;Jeong, S.H.;Park, J.J.;Choi, J.S.;Jeon, D.H.;Yun, Y.B.;Jang, B.H.;Moon, S.P.;Han, K.N.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.578-579
    • /
    • 2007
  • The importance and necessity of conducting studies on area outage cost assessment have been increasingly important in recent years due to the competitive electricity market environment. The objective of operational issues would be to minimize the total area cost while satisfying all associated system constrains of each area[2]. This paper presents a methodology of the Area annual outage cost assessment by probabilistic reliability evaluation using TRELSS program for KEPCO system. The interrupted energy assessment rate (IEAR) is evaluated by macro approach that is using relations between GRDP and the electrical energy demand. The Expected Energy Not Supplied (EENS) of each area was evaluated using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6_2, a program developed by EPRI are introduced in this paper.

  • PDF

Development of Visualization Model for Probabilistic Analysis of Cascading Failure Risks (확률론적 연쇄사고 분석을 위한 시각화 모형 개발)

  • Choy, Youngdo;Baek, Ja-hyun;Kim, Taekyun;Jeon, Dong-hoon;Yoon, Gi-gab;Park, Sang-Ho;Goo, Bokyung;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2018
  • According to the recent blackouts, large blackouts can be described by cascading outages. Cascading outage is defined by sequential outages from an initial disturbance. Sequential and probabilistic approach are necessary to minimize the blackout damage caused by cascading outages. In addition, conventional cascading outage analysis models are computationally complex and have time constraints, it is necessary to develop the new analytical techniques. In this paper, we propose the advance visualization model for probabilistic analysis of cascading failure risks. We introduce the visualization model for identifying size of cascading and potential outages and estimate the propagation rate of sequential outage simulation. The proposed model is applied to Korean power systems.