• Title/Summary/Keyword: energy loss

Search Result 3,491, Processing Time 0.043 seconds

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

Numerical Analysis on Performance Changes of the Tubular SOFCs according to Current Collecting Method (전류집전 방법에 따른 원통형 고체산화물 연료전지의 성능 변화 수치해석)

  • Yu, Geon;Park, Seok-Joo;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Song, Rak-Hyun;Shin, Dong-Ryul;Kim, Ho-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Performance changes of an anode-supported tubular SOFC including current collectors are analyzed at different current collecting methods using numerical simulation. From the two dimensional numerical model of the solid oxide fuel cell with nickel felts as anodic current collectors and silver wires as cathodic ones, the performance curves and the distributions of temperature, concentration, current density are obtained. Also, the voltage loss of the cell is divided into three parts: activation loss, concentration loss and ohmic loss. The results show that the performance change of the cell is dominantly influenced by the ohmic loss. Although the temperature and concentration distributions are different, the total activation loss and concentration loss are nearly same. And the ohmic loss is divided into each parts of the cell components. The ohmic loss of the anodic current collectorreaches about 60~80% of the cell's total ohmic loss. Therefore, the reduction of the ohmic loss of the anodic current collector is very important for stack power enhancement. It is also recommended that the load should be connected to the both ends of the anodic current collector.

The Analysis of Energy Loss of Pneumatic Tire and Non-pneumatic Tire on Impact (공기압 타이어와 비 공기압 타이어의 노면 충격 시 에너지 손실 연구)

  • Kim, Jinkyu;Jo, Hongjun;Kim, Heecheol;Kim, Dooman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2014
  • For the prevention of environmental pollution, there have been many researches which are eco-friendly vehicles in the automobile industry. In this paper, we studied for the non-pneumatic tires(NPT)can increase fuel consumption compared to conventional pneumatic tires. On driving, energy loss of tires occur when tires impact an obstacle on the road. This energy loss directly is relate to the fuel efficiency. Therefore, the energy loss of non-pneumatic tires is compared before and after impact. In this study, the results of energy loss of non-pneumatic tires and pneumatic tires was compared, when tires are rolled over an obstacle. As a result, the energy loss of non-pneumatic tires was less than pneumatic tires. This researches were performed the ABAQUS using finite element method and obtained the difference of velocity and kinetic energy from the program.

Computational Study of Energy Loss in a Pipe of Refuse Collecting System (쓰레기 관로운송 시스템의 운송에너지 손실에 관한 수치해석적 연구)

  • Lee, Jong-Gil;Choi, Yoon;Hong, Ki-Chul;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.421-426
    • /
    • 2009
  • This paper describes on energy loss in a pipe of refuse collecting system. Analysis energy loss in a pipe is the decisive factor in a design for refuse collecting system. From the analysis energy loss, we can determine the capacity of turbo blower. The flow characteristics in the pipe with the refuse bag are analyzed by three-dimensional Navier-Stokes analysis. The refuse bag is modeled using the actual measurement. We obtain friction factor by changing refuse bag's size and mixing ratio and Reynolds number. And From the result we calculate energy loss by using compressible flow analysis.

  • PDF

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

Analysis on Wave Absorbing Performance of a Pile Breakwater (파일 방파제의 소파성능 해석)

  • Cho, Il-Hyoung;Koh, Hyeok-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Based on the eigenfunction expansion method, the wave-absorbing performance of a square or circular pile breakwater was investigated. Flow separation resulting from sudden contraction and expansion is generated and is the main cause of significant energy loss. Therefore, evaluation of an exact energy loss coefficient is critical to enhancing the reliability of the mathematical model. To obtain the energy loss coefficient, 2-dimensional turbulent flow is analyzed using the FLUENT commercial code, and the energy loss coefficient can be obtained from the pressure difference between upstream and downstream. It was found that energy loss coefficient of circular pile is 20% that of a square pile. To validate the fitting equation for the energy loss coefficient, comparison between the analytical results and the experimental results (Kakuno and Liu, 1993) was made for square and circular piles with good agreement. The array of square piles also provides better wave-absorbing efficiency than the circular piles, and the optimal porosity value is near P=0.1.

A Development of Simulator to Assessment for Loss Saving of Harmonic Electric Power Energy (고조파 전력에너지의 손실절감량 산정 시뮬레이터 개발)

  • Kim, Yong-Ha;Jo, Hyun-Mi;Heo, Dong-Ryeol;Park, Jong-Min;Park, Hwa-Yong;Yoo, Jeong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1272-1273
    • /
    • 2011
  • A study on demonstration to development of simulator to assessment for loss saving of harmonic electric power energy. harmonic occurs to electric equipment like increase of terminal voltage, resonance phenomena occurrence and noise. To circulate of loss saving of harmonic electric power energy, we assessment electric power loss saving by harmonic and estimate loss saving of far-infrared radiation panel heating system.

  • PDF

Loss Calculation Method of Grid-Connected Photovoltaic System (계통연계형 태양광발전시스템의 손실 산출방법)

  • So, Jung-Hun;Lim, Hyun-Mook;Wang, Hye-Mi;Jung, Young-Seok;Ko, Suk-Whan;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • This paper presents a simple but valid loss calculation method of grid-connected photovoltaic system based on normalized yield model. The proposed method can be represented as a quantitative value for five losses and performance of grid-connected photovoltaic system with three years monitored data. These results will indicate that it is useful to investigate various loss factors causing the performance obstruction, enhance the lifetime yield for changing meteorological conditions, and determine the optimal design and performance improvement of grid-connected photovoltaic system.

Computational Study of Energy Loss in a Pipe of Refuse Collecting System (쓰레기 관로운송 시스템의 운송에너지 손실에 관한 수치해석적 연구)

  • Lee, Jong-Gil;Byun, Jae-Ki;Choi, Young-Don;Choi, Yoon;Hong, Ki-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes energy loss in a pipe line of refuse collecting system. Analysis of energy loss in a pipe line is the decisive factor in a design of refuse collecting system. Using the results of energy loss analysis, we can determine the power of turbo-blower. The flow characteristics of the pipe line with refuse bags were analyzed by three-dimensional CFD. The refuse bag is modeled by using the shape obtained from profile measurement. Friction factors were calculated with changing the refuse bag size, mixing ratio and Reynolds number. And drag coefficients were calculated using the CFD results. From the results we can calculate energy loss in a pipe line of refuse collecting system and predict the capacity of turbo-blower.

Effects of Cyclone and Freeboard Geometry on Solid Entrainment Loss in a Gas-Solid Fluidized Bed (기체-고체 유동층에서 사이클론과 프리보드의 형상이 고체 비산 손실에 미치는 영향)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOO SEOB;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.330-337
    • /
    • 2019
  • Effects of cyclone and freeboard geometry on solid entrainment loss were investigated with two different types of cyclones and bubbling beds in a gas-solid fluidized bed system. The solid entrainment loss was measured by collected fines during continuous solid circulation condition. Bubbling bed which has an expanded freeboard showed less solid entrainment than the bubbling bed which has a straight freeboard. The cyclone which has a wide gas-solid mixture inlet showed less solid entrainment loss than the cyclone which has a narrow gas-solid mixture inlet. Moreover, the cyclone has a wide gas-solid mixture inlet can capture smaller particles.