• Title/Summary/Keyword: energy intensity

Search Result 2,021, Processing Time 0.026 seconds

Work analysis of route survey work on forest-road (임도 노선측량 작업의 작업분석)

  • Kweon, Hyeong-Keon;Lee, Joon-Woo;Choi, Sung-Min;Yeom, In-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.209-214
    • /
    • 2013
  • This study examined the work time, work posture, and work intensity for the actual measurement step in forest road the design work that was being carried out. The measurement of the forest road was being carried by a team of three workers and a team of four workers. The examination of work time found that the measurement of 1km took about 8 hours for the four-worker team and 12 hours for the three-worker team. The examination of work intensity found that the energy metabolic rates of the three-worker team were lower than four-worker team. Because their energy consumption per minute decreased as their work time and rest time increased. Furthermore, when appropriate rest time was applied according to work time, the energy metabolic rate decreased and the work intensity became lower. The four-worker team was more advantageous from the time and cost aspects of the forest road measurement work. Furthermore, as the rest time was very low compared to the work time, more efficient forest road measurement work would be possible if the work intensity was lowered by considering the rest time when calculating the standard work time.

A Study on the Applicability of Arias Intensity Liquefaction Assessment (Arias Intensity 액상화 평가기법의 적용성에 관한 연구)

  • Hwang, Jungtae;Lee, Jongkeun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.13-19
    • /
    • 2013
  • In this study, the target ground was selected for the assessment of liquefaction, for which energy-based Arias intensity liquefaction assessment method was applied, The results of evaluation by simplified method using conventional in-situ test were compared. The result of the assessment of liquefaction revealed that the safety factor of the Arias Intensity using the actual records of the Hachinohe and Ofunato earthquake showed generally similar trends with the simplified method, However, the Arias Intensity factor of safety for the artificial earthquake created from the design response spectrum showed some difference from the factors of safety of the simplified method. The shear stress ratio and the occurrence strength of the Arias Intensity are differently calculated between stress and energy, but the resistance stress ratio of the simplified method and the resistance strength of the Arias Intensity use the empirical chart of the results of the standard penetration test for the actual liquefaction areas by the earthquake, which seems the reason for the similar results between Arias Intensity assessment and stress concept simplified method for Hachinohe and Ofunato earthquakes. Therefore, it was found that the energy-based Arias Intensity liquefaction assessment could represent the dynamic changes of the ground caused by seismic characteristics such as acceleration, magnitude, duration and amplitude.

LMDI Decomposition Analysis for GHG Emissions of Korea's Manufacturing Industry (LMDI 방법론을 이용한 국내 제조업의 온실가스 배출 요인분해분석)

  • Kim, Suyi;Jung, Kyung-Hwa
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.229-254
    • /
    • 2011
  • In this paper, we decomposed Greenhouse-Gas emissions of Korea's manufacturing industry using LMDI (Log Mean Divisia Index) method. Changes in $CO_2$ emissions from 1991 to 2007 studied in 5 different factors, industrial production (production effect), industry production mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect), and $CO_2$ emission factors (emission-factor effect). By results, the structure effect and intensity effect has a role of reducing GHG emissions and The role of structure effect was bigger than intensity effect. The energy mix effect increased GHG emissions and emission-factor effect decreased GHG emissions. By time series analysis, IMF regime affected the GHG emission pattern. the structure effect and intensity effect in that regime was getting worse. After 2000, in the high oil price period, the structure effect and intensity effect is getting better.

  • PDF

Structural Intensity Analysis of Local Ship Structures Using Finite Element Method (유한요소법을 이용한 선체 국부 구조물의 진동인텐시티 해석)

  • Dong-Hwan Lee;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.62-73
    • /
    • 2001
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of unstiffened and stiffened plates varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed mode method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the thickness-varying flat plate, L-type plate, and box-girder structures.

  • PDF

Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment

  • Salim, Imran;Paule-Mercado, Ma. Cristina;Sajjad, Raja Umer;Memon, Sheeraz Ahmed;Lee, Bum-Yeon;Sukhbaatar, Chinzorig;Lee, Chang-Hee
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • Climate change has significantly affected the rainfall characteristics which can influence the pollutant build-up and wash-off patterns from the catchment. Therefore, this study explored the influence of varying rainfall characteristics on urban and agricultural runoff pollutant export using statistical approaches. For this purpose, Mann-Kendall and Pettitt's test were applied to detect the trend and breakpoint in rainfall characteristics time series. In addition, double mass curve and correlation analysis were used to drive the relationship between rainfall-runoff and pollutant exports from both catchments. The results indicate a significant decreased in total rainfall and average rainfall intensity, while a significant increased trend for antecedents dry days and total storm duration over the study periods. The breakpoint was determined to be 2013 which shows remarkable trend shifts for total rainfall, average rainfall intensity and antecedents dry days except total duration. Double mass curve exhibited a straight line with significant rainfall-runoff relationship indicates a climate change effect on both sites. Overall, higher pollutant exports were observed at both sites during the baseline period as compared to change periods. In agricultural site, most of the pollutants exhibited significant (p< 0.05) association with total rainfall, average rainfall intensity and total storm duration. In contrast, pollutants from urban site significantly correlated with antecedent dry days and average rainfall intensity. Thus, total rainfall, average rainfall intensity and total duration were the significant factors for the agricultural catchment while, antecedents dry days and average rainfall intensity were key factors in build-up and wash-off from the urban catchment.

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

An Analysis and Visualization System for Ship Structural Intensity Using a General Purpose FEA Program (범용 유한요소해석 프로그램을 이용한 선박 진동인텐시티 해석 및 가시화 시스템)

  • Kim, Byung-Hee;Yi, Myung-Seok;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.487-492
    • /
    • 2005
  • The structural intensity analysis, which calculates vibration energy flow from vibratory velocity and internal force of a structure, can give information on sources' power, dominant transmission path and sink of vibration energy. In this study, we present a system for structural intensity analysis and visualization to apply for anti-vibration design of ship structures. The system calculates structural intensity from the results of forced vibration analysis and visualize the intensity using a general purpose finite element analysis program MSC/Nastran and its pre- and post-processor program. To demonstrate the analysis and visualization capability of the presented system, we show and discuss the results of structural intensity analysis for a cross-stiffened plate and a 70,500 OW crude oil tanker

Effect of Wake on the Energy Production of the Downstream Wind Turbine (후류가 하류 풍력발전기의 발전량에 미치는 영향)

  • Hong, Young-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.32-38
    • /
    • 2016
  • In this study, the effect of wake on the energy production of a downstream wind turbine was analyzed on the base of operation practices of wind farm in the coastal complex terrain which has 2 row array of wind turbines. And changes in the variation of wind speed and turbulence intensity was analyzed. In case wind turbines are spaced 4-rotor diameter-apart in the prevailing wind direction, reduction in energy production was confirmed due to the decrease of wind speed and the increase of turbulence intensity by wake. Especially a radical change of wind direction caused wind turbine a sudden stop and energy production significantly reduced. It is considered improvement of yaw brake can prevent the sudden stop and increase energy production.

  • PDF

The Analysis on the Determinants of Energy Efficiency Changes in the Industrial Sector (산업부분 에너지 효율 변화요인 분석)

  • Na, In-Gang;Lee, Sung-Keun
    • Environmental and Resource Economics Review
    • /
    • v.17 no.2
    • /
    • pp.255-286
    • /
    • 2008
  • In this paper, it is tried to combine the decomposition method and econometric analysis for the extension of the decomposition method. Since two approaches approach the energy efficiency problem in the different perspectives, it is believed that it is hard to reconcile the results of two approaches. In the results of energy intensity effect analysis with the econometric method, it is found that the increase in the energy price results in the improvement of energy intensity effect. In enconometric analysis of energy efficiency, the coefficient of a time trend measured as a proxy of energy efficiency is significant and has a negative effect on the energy consumption. This finding implies the energy efficiency improves very slowly over time. In addition, the directions of energy efficiency improvement in the decomposition method are consistent with those in the econometric analysis in four industries. This finding indicates that two methods may be in complementary cooperation for the analysis of energy efficiency. Therefore, it is needed the efforts to seek the complementarity between two methods for the enhancement of academic and policy implications.

  • PDF

Development of Energy Efficiency Indicator in the Steel Industry (철강산업의 에너지효율 지수개발과 관리기법 연구)

  • Lee, Sang-Youp;Ahn, Yoon-Gih
    • Environmental and Resource Economics Review
    • /
    • v.12 no.1
    • /
    • pp.29-48
    • /
    • 2003
  • The Steel Industry has made a significant contribution to the increase of energy use in Korea. This paper presents a method for development energy efficiency indicator in the steel industry based on the decomposing approach. This paper develops a logically consistent method for decomposing a change in energy consumption into the effects of three factors structural change, energy intensity and output level. Numerical illustration of the method is given using 1992~2001 data for energy consumption in a virtual works. The most dominant factor is revealed to be the output effect. The energy intensity for the steel industry has increased and the effect of such a growth was relatively strongly reflected in the decomposition analysis. The structural effect turned out to be also important during the periods.

  • PDF