• Title/Summary/Keyword: energy integration

Search Result 742, Processing Time 0.031 seconds

Vertical Integration of Solar business and its Value Analysis: Efficiency or Flexibility (태양광 수직통합화가 사업가치에 미치는 영향: 효율성 및 유연성)

  • Kim, Kyung-Nam;Jeon, Woo-Chan;SonU, Suk-Ho
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.33-43
    • /
    • 2012
  • Why solar companies preferred vertical integration of whole value chain? Major solar companies have built internally strong vertical integration of entire PV value chain. We raise a question whether such integration increases the corporate value and whether market situation affects the result. To test these questions, we conducted multi-variant analysis where characteristic factors mainly affect the corporate value measured in terms of Tobin'Q, based on the financial and non-financial data of PV companies listed in US stock market between 2005 and 2010. We hypothesize that since integration increases the overall efficiency but decreases the flexibility to adjust to various market situation, the combined effect of the efficiency gain and the flexibility loss ultimately determines the sign of integration effect on the corporate vale. We infer that the combined effect will be influenced heavily by business cycle, as in boom market (Seller's market) the efficiency gain may be larger than the flexibility loss and vice versa in bust market. We test whether the sign of combined effect changes after the year of 2009 and which factors influence most the sign. Year of 2009 is known as the year when market shifted from Seller's to Buyer's market. We show that 1) integration increases corporate value in general but after 2009 integration significantly decreases the value, 2) the ratios such as Production/Total Cost, Cash turnover period chosen for reversal of the flexibility measure are negatively affect Tobin's Q and especially stronger after 2009. This shows the flexibility improves corporate value and stronger in the recess period (Buyer's market). These results imply that solar company should set up integration strategy considering the tradeoff between efficiency and flexibility and the impact of the business cycle on both factors. Strategy only based on the price competitiveness determined in boom time can bring undesirable outcomes to the company. In addition, Strategic alliances in some value chains as a flexible bondage should be taken in account as complementary choice to the rigid integration.

The Development of the Management System and GIS Based Information Strategy Planning for New Renewable Energy (신재생에너지에 대한 GIS기반의 정보화전략계획 수립 및 통합관리 시스템 개발)

  • Kim, Kwang-Deuk;Jeong, Jae-Hyuck;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.43-51
    • /
    • 2006
  • New renewable energy information becomes one of the greatest issues all over the world because of serious environment problems and limited fossil resources. The new renewable energy source information system is treated seriously for efficient management and distribution as dealing with these energy problems. However, it is difficult to manage and utilize new renewable energy information because gathering and surveying information is progressed individually in each research field. Therefore this paper will establish ISP(Information Strategy Planning) and propose the basic management system based-on GIS to analyze new renewable energy such as solar energy, wind power, small hydro, biomass, geothermal etc. and build the integration management system. The proposed integration management system can provide spatial analysis using thematic map, data search, data import/export and interpolation about users' queries.

Theoretical approach for uncertainty quantification in probabilistic safety assessment using sum of lognormal random variables

  • Song, Gyun Seob;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2084-2093
    • /
    • 2022
  • Probabilistic safety assessment is widely used to quantify the risks of nuclear power plants and their uncertainties. When the lognormal distribution describes the uncertainties of basic events, the uncertainty of the top event in a fault tree is approximated with the sum of lognormal random variables after minimal cutsets are obtained, and rare-event approximation is applied. As handling complicated analytic expressions for the sum of lognormal random variables is challenging, several approximation methods, especially Monte Carlo simulation, are widely used in practice for uncertainty analysis. In this study, a theoretical approach for analyzing the sum of lognormal random variables using an efficient numerical integration method is proposed for uncertainty analysis in probability safety assessments. The change of variables from correlated random variables with a complicated region of integration to independent random variables with a unit hypercube region of integration is applied to obtain an efficient numerical integration. The theoretical advantages of the proposed method over other approximation methods are shown through a benchmark problem. The proposed method provides an accurate and efficient approach to calculate the uncertainty of the top event in probabilistic safety assessment when the uncertainties of basic events are described with lognormal random variables.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

A Case Study of Post-Merger IT Integration Methodology on Cross-Border Mergers and Acquisitions (해외기업 인수합병 시 정보시스템 통합 방법론에 관한 사례연구)

  • Suh, Byung-Wan;Baek, Seung-Ik
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.67-81
    • /
    • 2011
  • Recently, Mergers and Acquisitions (M&A) have become increasingly popular in the last few decades, and overseas' M&A are particularly increasing to sharpen corporate competitiveness on a global scale. Previous studies showed that one of the main reasons attributes to failures of mergers was the lack of attention to merging information systems. In recent years, both academy and industry have more focused on Post-Merger Integration (PMI) and the integration of information systems (IS) between two companies is one of the critical success factors of corporate. This paper focused on Post-Merger IT (Information Technology) Integration Methodology of Cross-Border M&A. We followed a single-site qualitative case study method in order to investigate the type of phenomenon in M&A's natural setting. Moreover, we examined a typical energy and power company case in order-based industry, so that other industry players may have different results to determine post-merger IT integration method and scope.

Energy System Analysis of LNG-FPSO Pre-Ttreatment Processes by Heat Integration Technique (LNG-FPSO 전처리 공정 에너지 시스템 분석)

  • Cho, Ha-bin;Kim, Jin-Kuk;Min, Kwang-Jun;Lim, Dong-Ha
    • Plant Journal
    • /
    • v.8 no.4
    • /
    • pp.40-44
    • /
    • 2012
  • The pre-treatment of natural gas to remove $H_2S$ and $CO_2$ before liquefaction in natural gas processing is required, and amine-based absorption processes are widely used in gas processing. The current study aims to model amine-based absorption process and to find cost-effective design through systematic analysis of energy systems, together with column design. Different design options for absorber and stripper are investigated in a holistic manner, and heat integration technique has been applied to investigate how design of columns is interacted with energy efficiency for the pre-treatment process considered. Case study has been presented to demonstrate the applicability of heat integration method for improving energy efficiency in practice.

  • PDF

An accurate and efficient shell element with improved reduced integration rules

  • Zhong, Z.H.;Tan, M.J.;Li, G.Y.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.591-605
    • /
    • 1999
  • An accurate and efficient shell element is presented. The stiffness of the shell element is decomposed into two parts with one part corresponding to stretching and bending deformation and the other part corresponding to shear deformation of the shell. Both parts of the stiffness are calculated with reduced integration rules, thereby improving computational efficiency. Shear strains are averaged on the reference surface such that neither locking phenomena nor any zero energy mode can occur. The satisfactory behaviour of the element is demonstrated in several numerical examples.