• Title/Summary/Keyword: energy integration

Search Result 756, Processing Time 0.046 seconds

New Governmental National Agenda and New Executive Bodies' R&D Strategic Goals on Geoscience and Mineral Resources (신정부 국정과제 및 지질자원 분야 R&D 정책 방향 분석)

  • Ahn, Eun-Young;Lee, Jae-Wook;Park, Jung-Kyu
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.469-476
    • /
    • 2013
  • With the advent of a new Korean government, a new national agenda (140 items) was reported. Additionally, Work Plans of the executive bodies were also released, including the Ministry of Science, ICT and Future Planning (MSIP); the Ministry of Trade, Industry and Energy (MOTIE); the Ministry of Oceans and Fisheries (MOF); and the Ministry of Environment (MOE); the Ministry of Land, Infrastructure, and Transport (MOLIT). For government-supported research institutes, it will be important to watch and analyze the changes in the government's primary policies and strategic goals. In this paper, we analyzed new governmental research and development (R&D) policy with respect to geoscience and mineral resources technology. The results indicated that the executive bodies emphasized, for the job creating 'creative economy' and the 'safety and integration society', the establishment of the creative economy; science and technology development based on creativity and innovation; creation of new growth engines by fusion and diffusion; construction of stable energy systems; promotion of environmental industry; and creating satisfactory land services. In the area of geoscience and mineral resources technology, it is time to search for a new, creative, and interagency fusion R&D contents to meet the needs of the public and boost its national competitiveness.

OPTICAL PERFORMANCE OF BREADBOARD AMON-RA IMAGING CHANNEL INSTRUMENT FOR DEEP SPACE ALBEDO MEASUREMENT (심우주 지구 반사율 측정용 아몬라 가시광 채널의 광학 시스템 제조 및 성능 평가)

  • Park, Won-Hyun;Kim, Seong-Hui;Lee, Han-Shin;Yi, Hyun-Su;Lee, Jae-Min;Ham, Sun-Jung;Yoon, Jee-Yeon;Kim, Sug-Whan;Yang, Ho-Soon;Choi, Ki-Hyuk;Kim, Zeen-Chul;Lockwood, Mike;Morris, Nigel
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.79-90
    • /
    • 2007
  • The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm) in wavefront error, the ensquared energy of 61.7%($in\;14\;{\mu}m$) and the MTF of 35.3%(Nyquist frequency: $35.7\;mm^{-1}$) at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

Monitoring-Based Secure Data Aggregation Protocol against a Compromised Aggregator in Wireless Sensor Networks (무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜)

  • Anuparp, Boonsongsrikul;Lhee, Kyung-Suk;Park, Seung-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.303-316
    • /
    • 2011
  • Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total number of nodes and the cost is the same or better than other existing solutions.

Analysis of the Spectrum Intensity Scale for Inelastic Seismic Response Evaluation (비탄성 지진응답평가를 위한 Spectrum Intensity Scale 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Seo, Ju-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.35-44
    • /
    • 2011
  • PGA (Peak Ground Acceleration) is the parameter which indicates the peak value for strong ground motion and is mainly due to the intensity of the seismic wave. Usually, seismic waves can consist of different characteristics and can have different effects on structures. Therefore, it may be undesirable that the effects of a seismic wave are evaluated only based on the PGA. In this study, time history analysis was executed with a single degree of freedom model for inelastic seismic analysis. The numerical model was assumed to be a perfect elasto-plastic model. Input accelerations were made with El Centro NS (1940), other earthquake records and artificial earthquakes. The displacement ductility demand and cumulative dissipated energy, which were calculated from other artificial earthquakes, were compared. As a result, different responses from other seismic waves which have the same PGA were identified. Therefore, an index which could reflect both seismic and structural characteristics is needed. The SI (Spectrum Intensity) scale which could be obtained from integration by parts of the velocity response spectrum could be an index reflecting the inelastic seismic response of structures. It can be possible to identify from correlation analysis among the SI scale, displacement ductility demand and cumulative dissipated energy that the SI scale is sufficient to be an index for the inelastic response of structures under seismic conditions.

STP Development in the Context of Smart City

  • Brochler, Raimund;Seifert, Mathias
    • World Technopolis Review
    • /
    • v.8 no.2
    • /
    • pp.74-81
    • /
    • 2019
  • Cities will soon host two third of the population worldwide, and already today 80% of the world energy is used in the 20 largest cities. Urban areas create 80% of the greenhouse gas emission, so we should take care that urban areas are smart and sustainable as implementations have especially here the greatest impact. Smart Cities (SC) or Smart Sustainable Cities (SSC) are the actual concepts that describe methodologies how cities can handle the high density of citizens, efficiency of energy use, better quality of life indicators, high attractiveness for foreign investments, high attractiveness for people from abroad and many other critical improvements in a shifting environment. But if we talk about Entrepreneurship Ecosystem and Innovation, we do not see a lot of literature covering this topic within those SC/SSC concepts. It seems that 'Smart' implies that all is embedded, or isn't it properly covered as brick stone of SC/SSC concepts, as they are handled in another 'responsibility silo', meaning that the policy implementation of a Science and Technology Park (STP) is handled in another governing body than SC/SSC developments. If this is true, we will obviously miss a lot of synergy effects and economies of scale effects. Effects that we could have in case we stop the siloed approaches of STPs by following a more holistic concept of a Smart Sustainable City, covering also a continuous flow of innovation into the city, without necessarily always depend on large corporate SSC solutions. We try to argue that every SSC should integrate SP/STP concepts or better their features and services into their methodology. The very limited interconnectivity between these concepts within the governance models limits opportunities and performance in both systems. Redesigning the architecture of the governance models and accepting that we have to design a system-of-systems would support the possible technology flow for smart city technologies, it could support testbed functionalities and the public-private partnership approach with embedded business models. The challenge is of course in complex governance and integration, as we often face siloed approaches. But real SSC are smart as they are connecting all those unconnected siloes of stakeholders and technologies that are not yet interoperable. We should not necessarily follow anymore old greenfield approaches neither in SSCs nor in SP and STP concepts from the '80s that don't fit anymore, being replaced by holistic sustainability concepts that we have to implement in any new or revised SSC concepts. There are new demands for each SP/STP being in or close to an SC/SCC as they have a continuous demand for feeding the technology base and the application layer and should also act as testbeds. In our understanding, a big part of STP inputs and outputs are still needed, but in a revised and extended format. We know that most of the SC/STP studies claim the impact is still far from understood and often debated, therefore we must transform the concepts where SC/STPs are not own 'cities', but where they act as technology source and testbed for industry and new SSC business models, being part of the SC/STP concept and governance from the beginning.

A Linear Wave Equation Over Mild-Sloped Bed from Double Integration (이중적분을 이용한 완경사면에서의 선형파 방정식)

  • Kim, Hyo-Seob;Jung, Byung-Soon;Lee, Ye-Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.165-172
    • /
    • 2009
  • A set of equations for description of transformation of harmonic waves is proposed here. Velocity potential function and separation of variables are introduced for the derivation. The continuity equation is in a vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced. The new equation composed of the complex velocity potential function, further be modified into. A set up of equations composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij's inclined plane slope profile, Massel's smooth bed profile, and Bragg's wavy bed profile. The present equations set is satisfactorily verified against existing theories including Massel's modified mild-slope equation, Berkhoff's mild-slope equation, and the full linear equation.

  • PDF

A Study on the Diffusion of Emergency Situation Information in Association with Beacon Positioning Technology and Administrative Address (Beacon 위치측위 기술과 행정주소를 연계한 재난재해 상황 전파 연구)

  • Mo, Eunsu;Lee, Jeakwang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.211-216
    • /
    • 2016
  • Worldwide casualties caused by earthquakes, floods, fire or other disaster has been increasing. So many researchers are being actively done technical studies to ensure golden-time. In this paper if a disaster occurs, use the IoT technologies in order to secure golden-time and transmits the message after to find the user of the accident area first. When the previous job is finished, gradually finds a user of the surrounding area and transmits the message. For national emergency information, OPEN API of Korea Meteorological Administration was used. To collect detailed information on a relevant area in real time, this study established the system that connects and integrates Crowd Sensing technology with BLE (Bluetooth Low Energy) Beacon technology. Up to now, the CBS based on base station has been applied. However, this study designed and mapped DB in the integration of Beacon based user positioning and national administrative address system in order to estimate local users. In this experiment, the accuracy and speed of information dif6fusion algorithm were measured with a rise in the number of users. The experiments were conducted in a manner that increases the number of users by one thousand and was measured the accuracy and speed of the message spread transfer algorithm. Finally, became operational in less than one second in 20,000 users, it was confirmed that the notification message is sent.

Case Analysis of Seismic Velocity Model Building using Deep Neural Networks (심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.2
    • /
    • pp.53-66
    • /
    • 2021
  • Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.

SNU 1.5MV Van de Graaff Accelerator (IV) -Fabrication and Aberration Analysis of Magnetic Quadrupole Lens- (SNU 1.5MV 반데그라프 가속기 (IV) -자기 4극 렌즈의 제작과 수차의 분석-)

  • Bak, H.I.;Choi, B.H.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • A magnetic quadrupole doublet was fabricated for use at the pre-target position of SNU 1.5MV Van de Graaff accelerator and then its optical characteristics were measured and analysed. The physical dimensions are: pole length 180mm, aperture radius 25mm, pole tip radius 28.75mm. Material for poles and return yokes is carbon steel KS-SM40C. Coils have 480 turns per one pole and air-cooling is adopted. Applying the d.c. current 2.99$\pm$0.03A to the lens, and using the Hall probe, magnetic field elements $B_{\theta}$ , $B_{\gamma}$, were measured at the selected Points along each coordinate direction r,$\theta$, z. From the area integration and orthogonal polynomial fitting for the measured data, the magnetic Field gradient G=566.3$\pm$2.1 gauss/cm at lens center, the effective length L=208.3$\pm$1.44mm along the lens axis have been obtained. The harmonic contents were determined up to 20-pole from the generalized least squares fitting. The results indicate that sextupole/quadrupole is below 1.4$\pm$0.9% and all the other multipoles are below 0.5% in the region within 18mm radius at the center of lens.

  • PDF

From Radon and Thoron Measurements, Inhalation Dose Assessment to National Regulation and Radon Action Plan in Cameroon

  • Saidou;Shinji Tokonami;Masahiro Hosoda;Augustin Simo;Joseph Victor Hell;Olga German;Esmel Gislere Oscar Meless
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • Background: The current study reports measurements of activity concentrations of radon (220Rn) and thoron (220Rn) in dwellings, followed by inhalation dose assessment of the public, and then by the development of regulation and the national radon action plan (NRAP) in Cameroon. Materials and Methods: Radon, thoron, and thoron progeny measurements were carried out from 2014 to 2017 using radon-thoron discriminative detectors (commercially RADUET) in 450 dwellings and thoron progeny monitors in 350 dwellings. From 2019 to 2020, radon track detectors (commercially RADTRAK) were deployed in 1,400 dwellings. It was found that activity concentrations of radon range in 1,850 houses from 10 to 2,620 Bq/㎥ with a geometric mean of 76 Bq/㎥. Results and Discussion: Activity concentrations of thoron range from 20 to 700 Bq/㎥ with a geometric mean of 107 Bq/㎥. Thoron equilibrium factor ranges from 0.01 to 0.6, with an arithmetic mean of 0.09 that is higher than the default value of 0.02 given by UNSCEAR. On average, 49%, 9%, and 2% of all surveyed houses have radon concentrations above 100, 200, and 300 Bq/㎥, respectively. The average contribution of thoron to the inhalation dose due to radon and thoron exposure is about 40%. Thus, thoron cannot be neglected in dose assessment to avoid biased results in radio-epidemiological studies. Only radon was considered in the drafted regulation and in the NRAP adopted in October 2020. Reference levels of 300 Bq/㎥ and 1,000 Bq/㎥ were recommended for dwellings and workplaces. Conclusion: Priority actions for the coming years include the following: radon risk mapping, promotion of a protection policy against radon in buildings, integration of the radon prevention and mitigation into the training of construction specialists, mitigation of dwellings and workplaces with high radon levels, increased public awareness of the health risks associated with radon, and development of programs on the scientific and technical aspects.