• Title/Summary/Keyword: energy input

Search Result 2,493, Processing Time 0.034 seconds

Energy-Efficient Antenna Selection in Green MIMO Relaying Communication Systems

  • Qian, Kun;Wang, Wen-Qin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2016
  • In existing literature on multiple-input multiple-output (MIMO) relaying communication systems, antenna selection is often implemented by maximizing the channel capacity or the output single-to-noise ratio (SNR). In this paper, we propose an energy-efficient low-complexity antenna selection scheme for MIMO relaying communication systems. The proposed algorithm is based on beamforming and maximizing the Frobenius norm to jointly optimize the transmit power, number of active antennas, and antenna subsets at the source, relaying and destination. We maximize the energy efficiency between the link of source to relay and the link of relay to destination to obtain the maximum energy efficiency of the system, subject to the SNR constraint. Compared to existing antenna selection methods forMIMO relaying communication systems, simulation results demonstrate that the proposed method can save more power in term of energy efficiency, while having lower computational complexity.

A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array) (AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구)

  • Kim, Young Man;Han, Jaeil
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Energy-based seismic design of structures with buckling-restrained braces

  • Kim, Jinkoo;Choi, Hyunhoon;Chung, Lan
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.437-452
    • /
    • 2004
  • A simplified seismic design procedure for steel structures with buckling-restrained braces (BRB) was proposed based on the energy balance concept and the equal energy assumption. The input seismic energy was estimated from a design spectrum, and the elastic and hysteretic energy were computed using energy balance concept. The size of braces was determined so that the hysteretic energy demand was equal to the hysteretic energy dissipated by the BRB. The validity of using equivalent single-degree-of-freedom systems to estimate seismic input and hysteretic energy demand in multi story structures with BRB was investigated through time-history analysis. The story-wise distribution pattern of hysteretic energy demands was also obtained and was applied in the design process. According to analysis results, the maximum displacements of the 3-story structure designed in accordance with the proposed procedure generally coincided with the target displacements on the conservative side. The maximum displacements of the 6- and 8-story structures, however, turned out to be somewhat smaller than the target values due to the participation of higher vibration modes.

Development of Simplified Building Energy Simulation Program for Building Energy Performance Analysis (건물에너지 성능 분석을 위한 간이 건물에너지 시뮬레이션 프로그램 개발에 관한 연구)

  • Park, Jong-Il;Kang, Yoon-Suk;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There are various types of energy simulation tool to predict both thermal load and energy use. However, the problem about these software is that they have too much input variables and need expert with skills to run the simulation. Therefore, the purpose of this study is to develop the thermal analysis simulation program with input variables which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the simulation engine of the program is DOE2, the validity of S-DOE is performed by comparing peak heating and cooling load results with VisualDOE and annual energy use results with actual energy use of 1996. The results have shown that there are little difference between VisualDOE and S-DOE. Also it showed that there are little difference between actual energy use and S-DOE energy use results. S-DOE took less time to model a building than VisualDOE. These results reveals that the application of S-DOE have potentials in accurately predicting both energy load and energy use of the building and still have an advantage of taking less time to model a building.

A Study on the Economic Effects of Renewable Energy Industry (신재생에너지산업의 경제적 파급효과 분석)

  • Kwon, Seung Moon;Kim, Ha Na;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • The world's major countries have focused on the renewable energy industry as the solution to climate change and the energy crisis. Nevertheless, there are no studies on the economic effects of the renewable energy industry. This study analyzed the economic effects of Korea's renewable energy industry by using the 2010 Input-Output Table. It is estimated that Korea's renewable energy industry made a production-induced effect of 2.0262 won, and a value-added-induced effect of 0.6138 won through an increase in output growth of 1 won, and an employment-induced effect of 2.3046 labors through an increase in output growth of 1 billion won. Both the effect ratio and the response ratio were greater than 1, which means the renewable energy industry is an intermediate manufacturing industry whose forward linkage effect and backward linkage effects are large. These results show differences with previous studies that classified electricity sector and renewable energy industry into final primary production industries. It is expected that the economic effects of the renewable energy industry will become greater in the future. Therefore, research on statistics related to the renewable energy industry is needed for more precise analysis.

A New Interleaved Double-Input Three-Level Boost Converter

  • Chen, Jianfei;Hou, Shiying;Sun, Tao;Deng, Fujin;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.925-935
    • /
    • 2016
  • This paper proposes a new interleaved double-input three-level Boost (DITLB) converter, which is composed of two boost converters indirectly in series. Thus, a high voltage gain, together with a low component stress and a small input current ripple due to the interleaved control scheme, is achieved. The operating principle of the DITLB converter under the individual supplying power (ISP) and simultaneous supplying power (SSP) mode is analyzed. In addition, closed-loop control strategies composed of a voltage-current loop and a voltage-balance loop, have been researched to make the converter operate steadily and to alleviate the neutral-point imbalance issue. Experimental results verify correctness and feasibility of the proposed topology and control strategies.

The Study on Interrelationship Analysis of Domestic Road Using PSD (PSD선도를 이용한 국내노면의 상관성 분석에 관한 연구)

  • Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Kim, Hyun-Chul;Bae, Chul-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.806-813
    • /
    • 2006
  • An important factor of vibration test using MAST(multi axial simulation table) system is the reliance of input excitation source. Generally the generation of input excitation source is obtained by the measured data on special road in proving ground. The measured data on special road have more exciting energy than the data of real fields, therefore the time and expense for test can be reduced. But the magnitude of input excitation source must be defined by comparison with the excited energy on real field. The object of this paper makes the data base of domestic roads for the definition of input excitation source which is obtained by the measured data on special road in proving ground. These real field data on domestic roads are analyzed by the power spectral density and interrelationship index.

Low-Power Buck-Boost Converter for Multi-Input Energy Harvesting Systems (다중입력 에너지 하베스팅 시스템을 위한 저전력 벅-부스트 변환기)

  • Jo, Gil-Je;Kwak, Myoung-Jin;Im, Ju-An;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.31-34
    • /
    • 2018
  • This paper presents a low-power buck-boost converter for multi-input energy harvesting systems. The designed circuit combines the energy harvested from three input channels in real time and stores it in a storage capacitor. The structure of the buck-boost converter is simplified by using one external inductor and applying time division technique using an arbiter. In addition, to improve the efficiency of the system, the controller circuits of the converter are designed so that current consumption is minimized. The proposed circuit is designed with $0.35{\mu}m$ CMOS process. Simulation results show that the designed circuit consumes up to 490nA of current when all three input channels are active, and the maximum power efficiency is 92%. The chip area of the designed circuit is $1310{\mu}m{\times}1100{\mu}m$.

  • PDF