• 제목/요약/키워드: energy harvesting networks

검색결과 125건 처리시간 0.03초

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

Energy harvesting from conducted electromagnetic interference of fluorescent light for Internet of Things application

  • Hyoung, Chang-Hee;Hwang, Jung-Hwan
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.759-768
    • /
    • 2022
  • A novel energy harvesting technique that uses conducted electromagnetic interference as an energy source is presented. Conducted EMI generated from fluorescent light using a switched-mode power supply was measured and modeled as an equivalent voltage source. Two types of rectifier circuits-a bridge rectifier and a voltage doubler-were used as the harvesting devices for conducted EMI source. The matching networks were designed based on the equivalent model, and the harvested power was improved. The implemented energy harvester produces a regulated power over 68.9 mW and current over 15.1 mA while a regulated voltage can be selected between 3.3 V and 5 V. The proposed system shows the highest harvesting power indoor environment and can provide enough power for the Internet of Things devices.

Java Thread를 이용한 무선 센서 노드 에너지 수확 시뮬레이터 (Wireless Sensor Node Energy-harvesting Simulator Using Java Threads)

  • 니코 엔카나시온;양현호
    • 인터넷정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.53-59
    • /
    • 2013
  • 주변 환경으로부터 에너지를 수확하는 것은 많은 응용 분야에서 센서네트워크의 에너지를 고갈시키는 상황을 완화시키는 데 필수적이다. 주변환경으로부터 얻을 수 있는 에너지는 적절하게 관리되고 수확된다면 시스템을 더욱 오랫동안 지속할 수 있게 한다. 이제까지 많은 시뮬레이터 들은 전원을 에너지 수확에 의존하는 센서네트워크를 시뮬레이션 하였다. 노드들이 에너지를 다양한 주변 에너지원으로부터 수확한다고 가정하고 시뮬레이션을 할 수 있다는 것은 매우 중요한 일이다. 또한, 에너지의 잔량을 지속적으로 추적하고 이에 따라 노드의 활동을 조정하는 것도 필수적이다. 본 연구의 목적은 각기 다른 에너지원에 따른 에너지 수확의 효과를 보여주는 단일 노드 시뮬레이터를 제안하는 것이다. 본 연구의 결과는 향후 더욱 정교한 시뮬레이션을 위하여 확장이 가능 하다.

Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates

  • Bacinoglu, Baran Tan;Uysal-Biyikoglu, Elif
    • Journal of Communications and Networks
    • /
    • 제16권3호
    • /
    • pp.293-300
    • /
    • 2014
  • As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, harvest state and time until the end of the horizon. The policy, which is based on computing an expected threshold, performs close to optimal on a wide range of example energy harvest patterns. Moreover, it achieves higher throughput values for a given delay, than throughput-optimal online policies developed based on infinite-horizon formulations in recent literature. The solution is extended to include ergodic time-varying (fading) channels, and a corresponding low complexity policy is proposed and evaluated for this case as well.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

무선 센서 네트워크에서 효율적인 에너지 관리를 위한 분산형 클러스터링 알고리즘 설계 (Design of Dispersed Clustering Algorithm for Efficient Energy Management in Wireless Sensor Network)

  • 전민호;강철규;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.839-842
    • /
    • 2011
  • 최근 무선 센서노드의 에너지 제약을 해결하기 위해 에너지 하비스팅 기반 무선 센서 네트워크에 대한 연구가 활발히 진행되고 있다. 에너지 하비스팅 기반 무선 센서 네트워크는 태양열, 풍력, 지력 에너지 등의 환경 에너지를 센서 노드의 전력으로 사용하여 노드의 생존 시간을 향상시키는 기술이다. 이러한 에너지 하비스팅 환경에서 기존의 에너지가 제약된 환경을 배경으로 개발된 라우팅 프로토콜을 사용할 경우, 하비스팅 장치로부터 축적되는 에너지가 경로 설정 시 반영되지 않는 문제점이 발생한다. 또한 분산되지 않은 경로들은 네트워크의 수명을 단축하게 된다. 따라서 본 논문에서는 각 노드간의 경로를 분산시키는 알고리즘을 제안한다. 시뮬레이터를 통해 제안하는 알고리즘을 사용했을 경우 노드의 경로가 다양하게 반영되는 것을 보여주었다.

  • PDF

타원형 압전 에너지 하베스터의 기계적 모델링 연구 (Study of Mechanical Modeling of Oval-shaped Piezoelectric Energy Harvester)

  • 최재훈;정인기;강종윤
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.36-40
    • /
    • 2019
  • Energy harvesting is an advantageous technology for wireless sensor networks (WSNs) that dispenses with the need for periodic replacement of batteries. WSNs are composed of numerous sensors for the collection of data and communication; hence, they are important in the Internet of Things (IoT). However, due to low power generation and energy conversion efficiency, harvesting technologies have so far been utilized in limited applications. In this study, a piezoelectric energy harvester was modeled in a vibration environment. This harvester has an oval-shaped configuration as compared to the conventional cantilever-type piezoelectric energy harvester. An analytical model based on an equivalent circuit was developed to appraise the advantages of the oval-shaped piezoelectric energy harvester in which several structural parameters were optimized for higher output performance in given vibration environments. As a result, an oval-shaped energy harvester with an average output power of 2.58 mW at 0.5 g and 60 Hz vibration conditions was developed. These technical approaches provided an opportunity to appreciate the significance of autonomous sensor networks.