• Title/Summary/Keyword: energy generation

Search Result 4,978, Processing Time 0.031 seconds

Generation of Sea Surface Temperature Products Considering Cloud Effects Using NOAA/AVHRR Data in the TeraScan System: Case Study for May Data (TeraScan시스템에서 NOAA/AVHRR 해수면온도 산출시 구름 영향에 따른 신뢰도 부여 기법: 5월 자료 적용)

  • Yang, Sung-Soo;Yang, Chan-Su;Park, Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.165-173
    • /
    • 2010
  • A cloud detection method is introduced to improve the reliability of NOAA/AVHRR Sea Surface Temperature (SST) data processed during the daytime and nighttime in the TeraScan System. In daytime, the channels 2 and 4 are used to detect a cloud using the three tests, which are spatial uniformity tests of brightness temperature (infrared channel 4) and channel 2 albedo, and reflectivity threshold test for visible channel 2. Meanwhile, the nighttime cloud detection tests are performed by using the channels 3 and 4, because the channel 2 data are not available in nighttime. This process include the dual channel brightness temperature difference (ch3 - ch4) and infrared channel brightness temperature threshold tests. For a comparison of daytime and nighttime SST images, two data used here are obtained at 0:28 (UTC) and 21:00 (UTC) on May 13, 2009. 6 parameters was tested to understand the factors that affect a cloud masking in and around Korean Peninsula. In daytime, the thresholds for ch2_max cover a range 3 through 8, and ch4_delta and ch2_delta are fixed on 5 and 2, respectively. In nighttime, the threshold range of ch3_minus_ch4 is from -1 to 0, and ch4_delta and min_ch4_temp have the fixed thresholds with 3.5 and 0, respectively. It is acceptable that the resulted images represent a reliability of SST according to the change of cloud masking area by each level. In the future, the accuracy of SST will be verified, and an assimilation method for SST data should be tested for a reliability improvement considering an atmospheric characteristic of research area around Korean Peninsula.

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection (미세주입을 이용한 난자로의 분리된 미토콘드리아 전달)

  • Baek, Sang-Ki;Byun, June-Ho;Kim, Bo Gyu;Lee, A ram;Cho, Young-Soo;Kim, Ik-Sung;Seo, Gang-Mi;Chung, Se-Kyo;Lee, Joon-Hee;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1445-1451
    • /
    • 2017
  • Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.

Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene (Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성)

  • Ahn Sun Hee;Lee Eun Mi;Kim Dong Gyun;Hong Gyoung Eun;Park Eun Mi;Kong In Soo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.131-135
    • /
    • 2006
  • Oligopeptide is known to be an essential nitrogen nutrient for bacterial growth. Oligopeptide can be transported into cytoplasm by a specific transport system, Opp system. Opp system is composed of five proteins, which are transcribed by an operon. These are responsible for oligopeptide binding protein (OppA), permease (OppB and OppC) and energy generation system (OppD and OppF), respectively. Previously, we isolated the opp operon from Vibrio fluvialis and constructed the oppA mutant by allelic exchange method. In this study, we investigated the growth pattern and biofilm production under the different growth condition. When the cells were cultivated using brain heart infusion(BHI) medium, the wild type was faster than the mutant in growth during the exponential phase. However, it showed that the growth pattern of two strains in M9 medium is very similar. The growth of wild type showed better than that of the mutant grown at pH 8. At pH 7, there was no an obvious difference in growth. After 5 mM $H_2O_2$ was treated to the cells $(OD_{600}=1.2)$, the cell survival was examined. The oppA mutation did not affect in survivability. In the presence of $10{\mu}g/ml$ polymyxin B, the biofilm production of the oppA mutant was higher than that of the wild type.

A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem (미세플라스틱의 환경노출을 최소화하기 위한 하·폐수 슬러지 관리방안)

  • An, Junyeong;Lee, Byung Kwon;Jeon, Byong-Hun;Ji, Min-Kyu
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Due to the negative impacts of microplastics (MPs) on the ecosystem, the investigation of its occurrence and its treatment from sewage and wastewater treatment plants (WWTPs) have received a lot of attention in the recent years. Most MPs are precipitated and removed with the sludge during the treatment process. Proper sludge management is immensely necessary to avoid MP exposure in the environment. However, the domestic research on this aspect is limited. This study reviews appropriate sludge management approaches to decrease environmental MP exposure. This can be achieved through investigating sludge generation and treatment, regulation laws and government policy trends with an emphasis on WWTPs. The ratio of sludge in sewage treatment plants has been observed to be highest in recycling followed by incineration and landfills. Recycling is the highest in fuel followed by construction materials and composting. For WWTPs, the highest ratio is in recycling followed by fuel and landfills, and recycling is confirmed in the following order: incineration > after composting > after solidification > earthworm breeding. Treatment approaches that can increase the exposure of MPs to the ecosystem are considered to be used in landfills and agricultural fields. However, this method is not appropriate given the insufficient capacity of domestic landfills and the sufficient supply of existing chemical and animal manure fertilizers. Instead, it would be rational in terms of environmental preservation to expand the use of fuel and energy in connection with the new and renewable energy policy, and to actively seek the use of sub-materials for construction materials. In order to secure the basic data for the effectiveness of future planning and revision of related laws, it is required to perform an in-depth investigation of the sludge supply and demand status along with the environmental and economic effects.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.

A Study on the Future Prospect for Establishing the True Donghak Phase of Daesoon Thought (대순사상의 참동학 위상정립을 위한 미래관 연구)

  • Kim, Yong-hwan
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.29
    • /
    • pp.1-36
    • /
    • 2017
  • The purpose of this article is to investigate the future prospects for establishing the True Donghak phase of Daesoon Thought. The True Donghak refers to 'the future prospect of having a true life, true thinking, and true living' in which enjoying the world in a state of good fortune became a true reality after the death of Suwun, according to faith in Gucheon Sangje. The correlation between "Attending to the Lord of Heaven" in Donghak, and "The Reordering Works of Heaven and Earth" in Daesoon shows the prospect of achieving the Daesoonist transformation into energy to gain true life and re-creation. The correlation between "Nourishing the Lord of Heaven" in Donghak and "Attending to Study and Attending to Law" in Daesoon show the transformation of Daesoon-reason into true thinking and renewing. The correlation between "Humanity is Divine" in Donghak and "The Salvation of Humanity is the Will of Heaven" in Daesoon show transformation into the practice of Daesoon for the true living and renewing. This investigation utilizes the literature review and the generation theory of life-philosophy to examine revelations regarding the conversation between Spirit and Mind. This is the future prospect for the establishing the True Donghak phase of Daesoon thought. It consists of a threefold connection among life, thinking, and living. The "public-centered spirituality of Daesoon Truth" which connects and mediates among people appears in three aspects. Firstly, it is thought to be the vision of the true life through the 'renewal of active, energetic power' bestowed by Gucheon Sangje. Secondly, it is thought to be the vision of true thinking through the "renewal via freedom from delusion". Thirdly, it is thought to be the vision of true living through the "renewal of true mind". To bring about the creation of true Donghak, Gucheon Sangje incarnated to the Korean peninsula instead of Suwun and the salvation of the world salvation now centers on Korea with regards to the threefold connection future prospect. Gucheon Sangje's revelation addresses and solves the postscript problem of Chosun and further establishes a Utopia. Suwun established Donghak but failed later on due to his lankiness. At last the true Donghak has been opened for the future by Gucheon Sangje and Jeongsan's fifty years of religious accomplishments. In the long run, it has been developed further by Woodang's Daesoon Jinrihoe.

Implications of Shared Growth of Public Enterprises: Korea Hydro & Nuclear Power Case (공공기관의 동반성장 현황과 시사점: 한국수력원자력(주) 사례를 중심으로)

  • Jeon, Young-tae;Hwang, Seung-ho;Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.57-75
    • /
    • 2021
  • KHNP's shared growth activities are based on such public good. Reflecting the characteristics of a comprehensive energy company, a high-tech plant company, and a leading company for shared growth, it presents strategies to link performance indicators with its partners and implements various measures. Key tasks include maintaining the nuclear power plant ecosystem, improving management conditions for partner companies, strengthening future capabilities of the nuclear power plant industry, and supporting a virtuous cycle of regional development. This is made by reflecting the specificity of nuclear power generation as much as possible, and is designed to reflect the spirit of shared growth through win-win and cooperation in order to solve the challenges of the times while considering the characteristics as much as possible as possible. KHNP's shared growth activities can be said to be the practice of the spirit of the times(Zeitgeist). The spirit of the times given to us now is that companies should strive for sustainable growth as social air. KHNP has been striving to establish a creative and leading shared growth ecosystem. In particular, considering the positions of partners, it has been promoting continuous system improvement to establish a fair trade culture and deregulation. In addition, it has continuously discovered and implemented new customized support projects that are effective for partner companies and local communities. To this end, efforts have been made for shared growth through organic collaboration with partners and stakeholders. As detailed tasks, it also presents fostering new markets and new industries, maintaining supply chains, and emergency support for COVID-19 to maintain the nuclear power plant ecosystem. This reflects the social public good after the recent COVID-19 incident. In order to improve the management conditions of partner companies, productivity improvement, human resources enhancement, and customized funding are being implemented as detailed tasks. This is a plan to practice win-win growth with partner companies emphasized by corporate social responsibility (CSR) and ISO 26000 while being faithful to the main job. Until now, ESG management has focused on the environmental field to cope with the catastrophe of climate change. According to KHNP is presenting a public enterprise-type model in the environmental field. In order to strengthen the future capabilities of the nuclear power plant industry as a state-of-the-art energy company, it has set tasks to attract investment from partner companies, localization and new technologies R&D, and commercialization of innovative technologies. This is an effort to develop advanced nuclear power plant technology as a concrete practical measure of eco-friendly development. Meanwhile, the EU is preparing a social taxonomy to focus on the social sector, another important axis in ESG management, following the Green Taxonomy, a classification system in the environmental sector. KHNP includes enhancing local vitality, increasing income for the underprivileged, and overcoming the COVID-19 crisis as part of its shared growth activities, which is a representative social taxonomy field. The draft social taxonomy being promoted by the EU was announced in July, and the contents promoted by KHNP are consistent with this, leading the practice of social taxonomy

THE EFFECT OF ND:YAG LASER IRRADIATION ON THE FORMATION OF CALCIUM FLUORIDE AND ACID RESISTANCE OF TOOTH ENAMEL (Nd:YAG 레이저 조사가 Calcium Fluoride 형성 및 치아 내산성에 미치는 영향)

  • Lee, Jae-Ho;Sohn, Heung-Kyu;Kim, Seong-Oh;Park, Kwang-Kyun;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.377-398
    • /
    • 1999
  • Calcium fluoride, created by topical fluoride application, is the reservoir for fluoride ion regulated by pH in the oral environment. Therefore, the amount and the maintenance of calcium fluoride have an important role in preventing dental caries. The aim of this study is to evaluate the effect of Nd:YAG laser irradiation on the generation of calcium fluoride and the acid resistance of tooth enamel. The bovine anterior permanent teeth were prepared (n=276), and divided into following groups : no treatment (control) fluoride application alone, laser irradiation alone, laser irradiation after fluoride application, and fluoride application after laser irradiation. And each group was subdivided based on the application time of 1.23% acidulated phosphate fluoride (APF) (5 min and 30 min) and the irradiation energy of Nd:YAG laser ($20J/cm^2\;and\;40J/cm^2$). In case of fluoride application, each group was divided according to KOH treatment. Twenty three treatment conditions were made for this experiment and twelve specimens were assigned to each treatment condition. In each treatment condition, ten specimens were used for chemical analysis and two specimens were observed under SEM. In groups without treating KOH, fluoride content and the depth of enamel dissolved were measured using enamel biopsy technique. In groups with treating KOH, the amount of calcium fluoride was measured by the treatment with 1 M KOH for 24 hours and enamel biopsy was performed after KOH treatment. The results were analyzed by the fluoride content and the depth of enamel dissolved by enamel biopsy, amount and thickness of calcium fluoride, and the surface structures of enamel. The results are as follows: 1. In groups without treating KOH, the fluoride content of removed enamel showed a positive relationship with the energy density of laser when the laser irradiated before fluoride application 2. In groups without treating KOH, the depth of enamel dissolved decreased more with the combined laser and fluoride treatment than with laser or fluoride treatment, except for the case of $20J/cm^2$ laser irradiation after 5 minute fluoride application (p<0.05). 3. The amount of calcium fluoride did not increased by laser treatment with no statistical significance(p>0.05). 4. The particle size of calcium fluoride increased in case of fluoride treatment after laser irradiation, compared with fluoride application alone. In case of laser treatment after fluoride application, the particle size of calcium fluoride increased and some of the particles fused as well. 5. There were no significant differences in the fluoride content of dissolved enamel between groups without treating KOH and control group, except for the case of laser irradiation after treatment of APF for 30 minutes (p>0.05). 6. In groups with treating KOH, depth of removed enamel in the groups of combined treatment with laser and fluoride was shallower than that in fluoride application groups (p<0.05). 7. In groups without treating KOH, the relationship between fluoride content and the depth of enamel dissolved showed more negative (Spearman correlation coefficient: -0.6281) than in groups with treating KOH (Spearman correlation coefficient: -0.3792). The greater amount of calcium fluoride could be found in case where there was a significant differences of the depth of enamel dissolved between groups with and without treating KOH. From these results, it can be concluded that laser seems to be a little effects on the amount of calcium fluoride formation, but has some effect on the lowering the solubility of calcium fluoride. As the combined treatment of laser and fluoride application showed more effective acid-resistant property, more extended recall period for fluoride application can be achieved with this combined treatment in the clinic.

  • PDF

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.