• Title/Summary/Keyword: energy generation

Search Result 4,981, Processing Time 0.032 seconds

Hydrofoil selection and design of a 50W class horizontal axis tidal current turbine model

  • Kim, Seung-Jun;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.856-862
    • /
    • 2015
  • Tidal current energy is an important alternative energy resource among the various ocean energy resources available. The tidal currents in the South-Western sea of Korea can be utilized for the development of tidal current power generation. Tidal power generation can be beneficial for many fishing nurseries and nearby islands in the southwest region of Korea. Moreover, tidal power generation is necessary for promoting energy self-sufficient islands. As tidal currents are always available, power generation is predictable; thus, tidal power is a reliable renewable energy resource. The selection of an appropriate hydrofoil is important for designing a tidal current turbine. This study concentrates on the selection and numerical analysis of four different hydrofoils (MNU26, NACA63421, DU91_W2_250, and DU93_W_210LM). Blade element momentum theory is used for configuring the design of a 50 W class turbine rotor blade. The optimized blade geometry is used for computational fluid dynamics (CFD) analysis with hexahedral numerical grids. Among the four blades, NACA63421 blade showed the maximum power coefficient of 0.45 at a tip speed ratio of 6. CFD analysis is used to investigate the power coefficient, pressure coefficient, and streamline distribution of a 50 W class horizontal axis tidal current turbine for different hydrofoils.

A Basic Experimental Study on Vibration Power Generation Using Bridge Vibration (교량의 진동을 이용한 진동력 발전 기초실험연구)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Yung-Ji;Yoon, Kwang-Won
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.121-129
    • /
    • 2010
  • Through this paper, we studied on the basic concept of vibration-induced power generation for urban infrastructures. Since the travelling of automobiles on the bridge cause vibration, it is possible to convert the vibration energy into green-electric energy by utilizing magnetic induction technology. In this paper we define the concept of green-bridge vibration power generation system which contains the concept of magnetic induction technology and propose a vibration power generation device for converting the bridge vibration energy into the electric energy. Also, an experiment was held by applying the vibration power generator on a real bridge. The results showed the applicability and effectiveness of the vibration power generator.

Mid- and Short-term Power Generation Forecasting using Hybrid Model (하이브리드 모델을 이용하여 중단기 태양발전량 예측)

  • Nam-Rye Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

Validity of solar energy generation at the underused Space of LPG filling station (LPG충전소 유휴공간의 태양광발전설비 설치 유효성)

  • Lee, Minkyung;Kim, Jeonghwan;Lee, Jinhan;Joe, Youngdo;Lee, Yeonjae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is safety evaluation of solar energy generation which is installed on the canopy at the LPG filling station. in case of a gas station, the solar energy generation was become legalization through a related law reform in 2008. Also, in case of a LPG filling station, the solar energy generation was become legalization through a related law reform in 2015. So, the related law that KGS CODE and Safety control of dangerous substances law and the case of installed solar energy generation in gas, LPG filling station was investigated. two scenarios are supposed for the CFD. Release of safety valve pipeline and ruptured dispenser leakage are the scenarios. The FLACS which developed GexCon in Norway was used for simulation. LPG dispersion to the upper side of canopy was very small with safety distance.

A Study on the Alternative Technology Evaluation Based on LCA and ″extended″ Energy I/O Technique (LCA와 에너지수지비 개념의 확장을 통한 대체에너지기술의 평가방법론)

  • 박찬국;박영구;최기련
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.317-324
    • /
    • 1999
  • This study suggests the effectiveness of an "extended" power system evaluation methodology based on LCA and energy input-output analysis techniques. This "extended" evaluation methodology is designed to incorporate total energy system costs through fuel cycle and external costs, including CO$_2$abatement cost. As an empirical test, we applied the methodology to orimulsion-fired power generation technology and found that orimulsion could be considered as in attractive base-load power generation fuel in terms of economic and environmental aspects, compared to conventional coal-fired power plant.

  • PDF

A Study on the Participation of Virtual Power Plant Based Technology Utilizing Distributed Generation Resources in Electricity Market (분산발전자원을 활용한 가상발전소 기반 기술의 전력시장 참여 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • A virtual power plant (VPP) technology is a cluster of distributed generation installations. VPP system is that integrates several types of distributed generation sources, so as to give a reliable overall power supply. Virtual power plant systems play a key role in the smart grids concept and the move towards alternative sources of energy. They ensure improved integration of the renewable energy generation into the grids and the electricity market. VPPs not only deal with the supply side, but also help manage demand and ensure reliability of grid functions through demand response (DR) and other load shifting approaches in real time. In this paper, utilizing a variety of distributed generation resources(such as emergency generator, commercial generator, energy storage device), activation scheme of the virtual power plant technology. In addition, through the analysis of the domestic electricity market, it describes a scheme that can be a virtual power plant to participate in electricity market. It attempts to derive the policy support recommendation in order to obtain the basics to the prepared in position of power generation companies for the commercialization of virtual power plant.

Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

  • Peng, Zhuoyin;Liu, Zhou;Chen, Jianlin;Liao, Lida;Chen, Jian;Li, Cong;Li, Wei
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.718-724
    • /
    • 2018
  • With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

Potential of Agricultural Residues for Small Biomass Power Generation in Thailand

  • Panklib, Thakrit
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The demand for energy in Thailand has been continually increasing as the economic and social country grows. Approximately 60% of Thailand's primary energy is imported, mostly petroleum products. In 2008 Thailand's total energy consumption was 80,971 ktoe and the net price of energy imported was up to 1,161 billion Baht which is equivalent to 12.8% of GDP at the current price. The energy consumption or energy demand has been growing at an annual compounded growth rate of 6.42% and the peak electric power demand and electricity consumption was recorded at 22,568 MW and 148,264 GWh and grew at a rate of 7.0% and 7.5% per annum during the period from 1989 to 2008. The gross agriculture production in 2008 was recorded at 135.4 Mt which represents agriculture residue for energy at 65.73 Mt, which is equivalent to energy potential of about 561.64 PJ or 13,292 ktoe an increase in average of 5.59% and 5.44% per year respectively. The agricultural residues can converted to 15,600 GWh/year or 1,780 MW of power capacity. So, if government sector plan to install small biomass gasification for electricity generation 200 kW for Community. The residue agricultural is available for 8,900 plants nationwide. The small biomass power generation for electricity generation not only to reduce the energy imports, it also makes the job and income for people in rural areas as well. This paper's aim is to report the energy situation in Thailand and has studied 5 main agricultural products with high residue energy potential namely sugarcane, paddy, oil palm, cassava, and maize appropriate for small electricity production. These agricultural products can be found planted in many rural areas throughout Thailand. Finally, discuss the situation, methods and policies which the government uses to promote small private power producers supplying electricity into the grid.

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.