• Title/Summary/Keyword: energy efficiency

Search Result 11,159, Processing Time 0.053 seconds

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

Marinelli Beaker Measurement and Self Absorption Correction and Application for Various Environmental Samples in Monte Carlo Simulation (몬테카를로 시뮬레이션에서의 다양한 환경 샘플에 대한 Marinelli 비이커 측정 및 자기 흡수 보정과 적용)

  • Jang, Eun-Sung;Gim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.605-611
    • /
    • 2017
  • The structure of the actual detector was computed using the code of the PENELOPE. Using the standard mixed sources (450, 1,000 ml), compare the effectiveness of each energy according to various densities and height of the PENELOPE computer simulation, and calculate the effectiveness of the various environmental specimens and apply them to various environmental specimens to determine the lower limit. The values obtained by the obtained value were obtained by applying the obtained efficiency to the actual environmental specimens and obtaining the lower limit values. The density correction factor is 1.155 g of the density correction factor of $0.4g/cm^3$ (59.54keV), 1.153 (661 keV), $1.06g/cm^3$ 1.064 (1,836.04keV), 1.03, and 1.033. It was confirmed that the radioactivity concentration of environmental samples decreased as the amount of specimen was measured increases, and the MDA value decreased as time measured increases.

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Anticancer Activity of Acer mono Wood Extracted by Ultra High Pressure Extraction Process (초고압 추출 공정을 통한 고로쇠 목부 추출물의 항암활성 증진)

  • Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Kang, Ha-Young;Choi, Geun-Pyo;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.157-167
    • /
    • 2010
  • We investigated a method to improve anticancer activities of Acer mono wood extracts by ultra high pressure extraction process. The A. mono was extracted by water at $40^{\circ}C$ and 300 MPa for 15 min (High Pressure Extraction, HPE). The extraction yield by ultra high pressure extraction process was 5.42%. The cytotoxicity on human normal lung cell (HEL299) of the extracts from HPE showed 21.54% lower than that from conventional water extraction at $100^{\circ}C$ in adding the maximum concentration of 1.0 mg/$m{\ell}$. Ultra high pressure extracts process for 15 minutes extracts (HPE15) showed more potent scavenging effect than the control, BHA. On SOD-like test, the HPE15 showed highest activity as 32.4% at 1.0 mg/$m{\ell}$ concentration. Human stomach adenocarcinoma, liver adenocarcinoma, breast adenocarcinoma and lung adenocarcinoma cell growth were inhibited up to about 67~79%, in adding 1.0 mg/$m{\ell}$ of extracts from HPE. HPE was 20~25% higher than conventional water extraction. It was interesting that, among several cancer cell lines (stomach adenocarcinoma, liver adenocarcinoma), the growth of digestive related cancer cells were most effectively inhibited as about 75~79%. On in vivo experiment using ICR mice, the variation of body weight of mice group treated A. mono wood extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The survival times of group treated this extracts was 61.96% longer than that of the control group and this extracts showed the lower tumor weight, which were 10.49 g than positive control as 16.17 g. Based on these results, we could tell that the HPE wood extracts of A. mono had higher anticancer activity than conventional water extraction. The results of HPE showed obvious advantages in higher efficiency, shorter extraction time, at lower energy costs.

Filtration Characteristics of Membrane-coupled Fermentor System for Dissolved Organics Recovery From Liquid Organic Sludge (액상유기성슬러지로부터 용존유기물의 회수를 위한 막결합형 발효 시스템의 여과 특성)

  • Jong Oh Kim
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • This study was focused on the investigation of filtration characteristics of membrane-coupled fermentor system for dissolved organics recovery from liquid organic sludge. On the filterability of MF over the range of $0.1{\sim}5 {\mu}m,$ the magnitude of total membrane resistance ($R_t$) is ranged as follows in the order; $0.1 {\mu}m>0.2{\mu}m>0.5 >1{\mu}m>2{\mu}m>5{\mu}m$. The cake layer resistance ($R_c$) occupied about 68~88% of total resistance with fermented sludge. Permeation flux decline was mainly attributed to the $R_c$, which was formed by a strong deposition from physico-chemical interactions of solids on membrane surface. Higher suspended solids (SS) concentration of suspension caused lower permeation flux. However, there was not a proportion relation beyond a certain SS concentration. The cross-flow velocity on the membrane surface was faster, which resulted in the higher permeation flux and also more efficient with low trans membrane pressure (TMP) in viewpoint of energy efficiency. The appropriate pH of suspension was over the range of 5.0~6.0 for dissolved organics recovery as well as the permeation flux. It is possible f3r bacteria to be separated perfectly with $0.1{\mu}m\; and \;0.2{\mu}m$ membrane pore size. Based on experimental results, most appropriate membrane pore size for the recovery is believed to around $1{\mu}m$.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.

The study on the quality characteristics factor of medium-sized orbit scroll (중형 선회 스크롤의 품질 특성 인자에 대한 연구)

  • Kim, Jae-Gi;Lim, Jeng-Taek;Kang, Soon-Kook;Park, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.718-723
    • /
    • 2016
  • The use of the scroll compressor in the air conditioning of medium-sized vehicles has increased because of its low torque fluctuation, high energy efficiency and low noise. In addition, the main components of the compressor have been changed from steel to aluminum to reduce its weight, following studies on the constituent materials. The processing precision of the fixed scroll and orbiting involute scroll wrap of the scroll compressor must be below $10{\mu}m$. To ensure this, the surface roughness and contour tolerance are measured. To improve the hardness of the orbiting scrolls using aluminum subjected to anodizing treatment and as the base material, we used a sealing treatment and measured the resulting characteristics. The aluminum materials were made of an Al-Mg-Cu based alloy including small amounts of Ni, Fe, and Zn. The surface roughness was less than $3{\mu}m$ and the processing accuracy was within $10{\mu}m$. Also, the hardness of the nanodiamonds with CNTs used in the sealing treatment was more than 450. This was found to improve the hardness of the material by 50% or more compared to the water sealing treatment and there was little difference between the use of carbon nanotubes and nanodiamonds as sealing materials.

Low Power EccEDF Algorithm for Real-Time Operating Systems (실시간 운영체제를 위한 저전력 EccEDF 알고리듬)

  • Lee, Min-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • For battery based real-time embedded systems, high performance to meet their real-time constraints and energy efficiency to extend battery life are both essential. Real-Time Dynamic Voltage Scaling (RT-DVS) has been a key technique to satisfy both requirements. In this paper, we present an efficient RT-DVS algorithm called EccEDF that is designed based on ccEDF. The proposed algorithm can precisely calculate the maximum unused utilization with consideration of the elapsed time while keeping the structural simplicity of ccEDF, which overlooked the time needed to run the task in calculating the available slack. The maximum unused utilization can be calculated by dividing remaining execution time($C_i-cc_i$) by remaining time($P_i-E_i$) on completion of the task and it is proved using Fluid scheduling model. We also show that the algorithm outperforms ccEDF in practical applications which is modelled using a PXA250 and a 0.28V-to-1.2V wide-operating-range IA-32 processor model.

The Effects of the Residual Ba and Zr on the Acid Pickling in Case of the Recovering of Zr in Pickling Waste Acid through the BaF2 Precipitation Process (BaF2 침전 공정을 통한 폐산세정액 내 Zr 회수 시 잔존 Ba 및 Zr이 산세정에 미치는 영향)

  • An, Chang Mo;Choi, Jeong Hun;Han, Seul Ki;Park, Chul Ho;Kahng, Jong Won;Lee, Young Jun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.97-104
    • /
    • 2017
  • Nuclear fuel cladding tubes are manufactured through pilgering and the annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zirconium (Zr) is dissolved in a HF and $HNO_3$ acid mixture during the process and the pickling waste acid, including the dissolved Zr, is completely discarded after neutralization. This study observes the effects of the residual impurities (Ba) in the pickling solution regenerated from the $BaF_2$ precipitation process on the waste pickling solution. In addition, the concentration of Ba and Zr for the actual nuclear fuel cladding tube process was optimized. The regenerated pickling solution was tested through a pilot plant pickling process device that simulates the commercial pickling process of nuclear fuel cladding tubes, and the pickling efficiency was analyzed through AFM analysis of the roughness of the cladding tube surface.