• 제목/요약/키워드: energy ductility

검색결과 676건 처리시간 0.023초

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

A simplified normalized cumulative hysteretic energy spectrum

  • Sun, Guohua;Gu, Qiang;Fang, Youzhen
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.177-189
    • /
    • 2017
  • For energy-based seismic design, a simplified normalized cumulative hysteretic energy spectrum proposed for obtaining hysteretic energy as energy demand is the main objective in this paper. The dimensionless parameter, ${\beta}_{Eh}$, is presented to express hysteretic energy indirectly. The ${\beta}_{Eh}$ spectrum is constructed directly through subtracting the hysteretic energy of single degree-of-freedom (SDOF) system energy equation. The simplified ${\beta}_{Eh}$ spectral formulation as well as pseudo-acceleration spectrum of modern seismic provisions is developed based on the regression analysis of the large number of seismic responses of SDOF system subjected to earthquake excitations, which considers the influence of earthquake event, soil type, damping ratio, and ductility factor. The relationship between PGV and PGA is established according to the statistical analysis relied on a total of 422 ground motion records. The combination of ${\beta}_{Eh}$ spectrum and PGV/PGA equation allows determining the cumulative hysteretic energy as a main aseismic design indicator.

Probabilistic models for curvature ductility and moment redistribution of RC beams

  • Baji, Hassan;Ronagh, Hamid Reza
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.191-207
    • /
    • 2015
  • It is generally accepted that, in the interest of safety, it is essential to provide a minimum level of flexural ductility, which will allow energy dissipation and moment redistribution as required. If one wishes to be uniformly conservative across all of the design variables, curvature ductility and moment redistribution factor should be calculated using a probabilistic method, as is the case for other design parameters in reinforced concrete mechanics. In this study, simple expressions are derived for the evaluation of curvature ductility and moment redistribution factor, based on the concept of demand and capacity rotation. Probabilistic models are then derived for both the curvature ductility and the moment redistribution factor, by means of central limit theorem and through taking advantage of the specific behaviour of moment redistribution factor as a function of curvature ductility and plastic hinge length. The Monte Carlo Simulation (MCS) method is used to check and verify the results of the proposed method. Although some minor simplifications are made in the proposed method, there is a very good agreement between the MCS and the proposed method. The proposed method could be used in any future probabilistic evaluation of curvature ductility and moment redistribution factors.

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

내부 구속 중공 CFT 교각의 연성도 평가 (Ductility Evaluations of Internally Confined Hollow CFT Column)

  • 김현종;염응준;한택희;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.683-687
    • /
    • 2007
  • Internally Confined Hollow-Concrete Filled Tube(ICH-CFT) column which has two tubes on both side of concrete, inner tube and outer tube perform great seismic abilities, ductility and absorption of energy, by the tubes and the hollow pmt. So this study does qualitative analysis about seismic capacities depending on parameters diameter of column, hollow ratio, thickness of tubes - by moment-curvature analysis.

  • PDF

Numerical crack modelling of tied concrete columns under compression

  • Bosco, C.;Invernizzi, S.
    • Computers and Concrete
    • /
    • 제10권6호
    • /
    • pp.575-586
    • /
    • 2012
  • In the present paper the problem of monotonically compressed concrete columns is studied numerically, accounting for transverse steel reinforcement and concrete cracking. The positive confinement effect of the ties on the core concrete is modeled explicitly and studied in the case of distributed or concentrated vertical load. The main aim is to investigate the influence of transverse reinforcement steel characteristics on the column load carrying capacity and ductility, in order to provide an evaluation about some standards requirements about the class and ductility of steel to be used for ties. The obtained results show that the influence of transverse reinforcement steel class of ductility is negligible both on the column load carrying capacity and on its ductility. Also the dissipated energy is basically unchanged. In view of these evidences, some standards requirements about the steel class of ductility to be used for ties appear to be rather questionable.

지진에 대한 강구조물의 피로손상도 추정법 (Fatigue Damage Assessment for Steel Structures Subjected to Earthquake)

  • 송종걸;윤정방;이동근
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

Blast behavior of steel infill panels with various thickness and stiffener arrangement

  • Lotfi, Saeid;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.587-600
    • /
    • 2018
  • Infill panel is the first element of a building subjected to blast loading activating its out-of-plane behavior. If the infill panel does not have enough ductility against the loading, it breaks and gets damaged before load transfer and energy dissipation. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Also, it plays a pivotal role in maintaining sensitive main parts against blast loading. Concerning enough ductility of the infill panel out-of-plane behavior, the impact force enters the horizontal diaphragm and is distributed among the lateral elements. This article investigates the behavior of steel infill panels with different thicknesses and stiffeners. In order to precisely study steel infill panels, different ranges of blast loading are used and maximum displacement of steel infill under such various blast loading is studied. In this research, finite element analyses including geometric and material nonlinearities are used for optimization of the steel plate thickness and stiffener arrangement to obtain more efficient design for its better out-of-plane behavior. The results indicate that this type of infill with out-of-plane behavior shows a proper ductility especially in severe blast loadings. In the blasts with high intensity, maximum displacement of infill is more sensitive to change in the thickness of plate rather the change in number of stiffeners such that increasing the number of stiffeners and the plate thickness of infill panel would decrease energy dissipation by 20 and 77% respectively. The ductile behavior of steel infill panels shows that using infill panels with less thickness has more effect on energy dissipation. According to this study, the infill panel with 5 mm thickness works better if the criterion of steel infill panel design is the reduction of transmitted impulse to main structure. For example in steel infill panels with 5 stiffeners and blast loading with the reflected pressure of 375 kPa and duration of 50 milliseconds, the transmitted impulse has decreased from 41206 N.Sec in 20 mm infill to 37898 N.Sec in 5 mm infill panel.