• 제목/요약/키워드: energy dissipating devices

검색결과 22건 처리시간 0.023초

탄소성 이력댐퍼를 구비한 접합부의 거동 (Structural Behavior of Beam-to-Column Connections with Elasto-Plastic Hysteretic Dampers)

  • 오상훈;유홍식;김영주
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.552-559
    • /
    • 2005
  • The resistance of a structure against an earthquake is related to its ability to absorb the seismic input energy. The development of devices for dissipating the seismically induced energy on the structure is a subject that is receiving large attentionin the field of earthquake engineering. One example of these devices is the steel plate with slits. In this paper, a connection with a slit-type steel plate damper installed at each ends of wide-flange section beam, as an energy absorption element, was proposed. A series of experiment was performed to investigate their behavior and structural characteristic. The main parameters were the aspect ratio of the struts in slit plates, thickness of the struts and height of the vertical plates. Test results indicated that most of the energy was absorbed by plastic deformation of slit plate dampers.

  • PDF

회전 마찰형 제진장치의 이력특성에 대한 실험적 연구 (Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices)

  • 박진영;한상환;문기훈;이강석;김형준
    • 한국지진공학회논문집
    • /
    • 제17권5호
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

Seismic multi-level optimization of dissipative re-centering systems

  • Panzera, Ivan;Morelli, Francesco;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.129-145
    • /
    • 2020
  • Seismic resilience is a key feature for buildings that play a strategic role within the community. In this framework, not only the structural and non-structural elements damage but also the protracted structural dysfunction can contribute significantly to overall seismic damage and post-seismic crisis situations. Reduction of the residual and peak displacements and energy dissipation by replaceable elements are some effective aspects to pursue in order to enhance the resilience. Control systems able to adapt their response based on the nature of events, such as active or semi-active, can achieve the best results, but also require higher costs and their complexity jeopardizes their reliability; on the other hand, a passive control system is not able to adapt but its functioning is more reliable and characterized by lower costs. In this study it is proposed a strategy for the optimization of the dissipative capacity of a seismic resistant system obtained placing in parallel two different groups dissipative Re-Centering Devices, specifically designed to enhance the energy dissipation, one for the low and the other for the high intensity earthquakes. In this way the efficiency of the system in dissipating the seismic energy is kept less sensitive to the seismic intensity compared to the case of only one group of dissipative devices.

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • 제24권5호
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가 (Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis)

  • 신동현;김형준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.9-20
    • /
    • 2014
  • 철골 중간모멘트골조는 강한 지반운동에 대하여 적합한 저항능력을 확보하기 위한 지진력저항시스템으로서 일반적으로 사용되고 있다. 하지만 국내의 대다수 중 저층 철골건축물은 내진설계가 도입되기 이전에 건설되었거나 현재의 내진설계기준의 요구조건을 준수하지 않은 것들로, 이러한 건물들이 가지는 내진성능에는 의문점이 존재한다. 이와 같은 문제점의 인식에 기반하여 본 연구에서는 국내 철골 중간 모멘트골조의 내진성능에 대한 정량적 제시를 목표로 우선 층수 종류, 지진에 대한 보유내력, 부재 연성도, 제진장치의 유무를 변수로 하여 표본 건물을 설계하였다. 표본 건물의 내진 성능과 붕괴 매커니즘은 비선형 정적해석과 증분동적해석으로부터 획득한 붕괴여유비와 붕괴확률을 이용하여 분석하였다. 해석결과를 통하여 현행 국내기준에 따라 내진설계된 신축건물은 설계지진에 대해 충분한 내진성능을 가졌으며, 이에 반해 구조부재의 연성저감이 발생하거나 낮은 설계 밑면전단력에 대한 저항력을 가진 기존건물의 경우에는 높은 붕괴확률을 가지며 목표로 한 내진성능을 만족시키지 못하는 것으로 나타났다. 이와 같은 내진성능을 충족시키지 못하는 내진설계 도입 이전의 건물에 대해서 에너지 소산장치를 통해 보강하게 되면 장치의 에너지 소산능력뿐만 아니라 소성힌지의 재분배를 통해 붕괴확률 및 내진성능이 신축건물 수준으로 향상되었다.

Seismic behavior of post-tensioned precast reinforced concrete beam-to-column connections

  • Cheng, Chin-Tung
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.525-544
    • /
    • 2008
  • In this research, the self-centering effect in precast and prestressed reinforced concrete structures was investigated experimentally. The reinforced concrete beams and columns were precast and connected by post-tensioning tendons passing through the center of the beams as well as the panel zone of the connections. Three beam-to-interior-column connections were constructed to investigate parameters such as beam to column interfaces (steel on steel or plastic on plastic), energy dissipating devices (unbonded buckling restrained steel bars or steel angles) and the spacing of hoops in the panel zone. In addition to the self-centering effect, the shear strength in the panel zone of interior column connections was experimentally and theoretically evaluated, since the panel zone designed by current code provisions may not be conservative enough to resist the panel shear increased by the post-tensioning force.

초소형 전기자동차용 고밀도 LDC 설계 (High Power-Density LDC Design for Ultra-Compact Electric Vehicles)

  • 김태원;이재원;김준민;김구용;김준호
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.199-204
    • /
    • 2021
  • Ultra-compact electric vehicles have narrow space for power conversion devices. This work presents schemes to achieve the high-power density of a low-voltage DC-DC converter (LDC): simplifying a converter structure by using sync-buck topology, applying a planar inductor using PCB winding, and applying a plate-type heat sink. The heat sink is placed between two PCBs, which increases the contact surface between the PCB and the heat-dissipating device. It enables the miniaturization of the converter to improve the conditions of heat radiation. The validity of the proposed scheme is verified through the experiment using a 500 W(12 V, 41.67 A) prototype with an input voltage range from 58 V to 84 V.

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.