• 제목/요약/키워드: energy diffusion rate

검색결과 356건 처리시간 0.026초

불투명 외피의 열관류에서 단열재의 습도영향 (Effects of the Moisture on the Overall Heat Transfer Through Heat Insulators Opaque Envelopes)

  • 이성
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.63-69
    • /
    • 1998
  • 일반적으로 건물 단열재는 건조된 것이 사용되며 이 상태에서 열전도율을 측정하여 열 손실을 산정할 때 기초자료로 이용될 수 있다. 그러나 이러한 단열재가 흡습성 재료인 경우에는 습도평형 혹은 다른 작용에 의해 습도가 높아지기에 이에 따라 열전도율도 상승하게된다. 이처럼 재료 열전도율의 상승효과는 건축물에 흡습성 재료가 사용될 경우 그 사이에 비흡습성 단열재료가 시공됐을 때도 양쪽재료의 흡습성으로 인하여 단열재의 열전도율이 상승하게 되며 이에 따른 열손실 또한 높아진다. 본 논문에서는 이러한 열전도율의 상승을 간단하게 계획단계에서 적용할 수 있도록 실측에 의해 검증된 약산식을 통해 산출될 수 있도록 하였다.

  • PDF

사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측 (Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels)

  • 전세계;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션 (Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

DSM 자원평가 및 소비자 행태 분석 (DSM Resources Evaluation and Customer Behavior Analysis)

  • 안남성;박민혁;류재국
    • 한국시스템다이내믹스연구
    • /
    • 제5권1호
    • /
    • pp.49-71
    • /
    • 2004
  • Demand-side Management can be defined as'any utility activity aimed at modifying customers' use of energy to produce desired changes in the utility's load shape'. Customers benefit by being able to control energy costs and improve quality of life and become more productive. Utilities benefit from DSM's value as a resource that enhances asset utilization and reduces both fuel costs and environmental emissions. The scope of DSM includes load management through rate schedules and conservation by improving energy effciency and using electricity consumption effectively. This paper study the DSM resource evaluation and customer behavior analysis todesign the DSM Program plan in response to customer needs. We develop basic system dynamics model to analysis the customer behavior based on a survey research. The DSM Program participants in the Hi- efficiency Inverter, Electric motor and efficient lighting applicancies operating by Conservation program 2002 become the survey objects. DSM resource evaluation evaluate firstt the distribution potentialities of each machine and then forecast the degree of diffusion. We apply the system dynamic approach to simulate the dynamic DSM market situation at the domestic beginning. This model will give the energy Planner the opportunity to create different scenarios for DSM program planning. Also it will lead to increased understanding of the dynamic DSM market

  • PDF

고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화 (Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

12% Cr강의 고온 확산계수의 응력의존성과 조직의 특성에 관한 연구 (A study on the stress dependence of diffusion coefficient at the elevated tenperature and the structural characterictics of 12% Cr rotor steel.)

  • 장윤석;김태형
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.39-47
    • /
    • 1997
  • Creep rate the elevated temperature is known to be controller by the softening process of microstructure especially in the solid solution alloys such as 125 Cr rotor steel. The change of structure is a decreasing process of the free energy of the state including stress, diffusivity of the material, and tmeperature. This study shows that diffusion coefficient, D of 12% Cr rotor steel at 953K with 74.8 MPa is 1.084~3.140*$10^{15}mm^2sec^1$ compared to $1.658*10^{24}mm^2sec^1$at 963K without stress. During creep, the growth of martensite laths accelerates the diffusion coefficient under stress due to incoherency of interface between carbides and matrix.

  • PDF

산소부화공기가 난류 확산 평면화염의 연소에 미치는 영향 (Effect of Oxygen Enriched Air on the Combustion of a Turbulent Diffusion Flat Flame)

  • 곽지현;전충환;장영준
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.1-7
    • /
    • 2003
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and by the high temperature flame. Flame figures, OH radical intensities, temperature distributions and emission concentrations were measured according to oxygen enriched concentration and swirl number in a turbulent diffusion flat flame. It appeared that flame figure became flat and NO concentration decreased with increase of swirl number, and that the flame temperature increased high with increase of oxygen enriched concentration. In particular, it was most significant between oxygen concentration $40{\sim}60%$.

  • PDF

광덕트방식 자연채광 시스템의 산광부에 대한 연구 (A study on lighting Diffusion system of Daylight Duct System)

  • 송규열;박경우;류한기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.99-104
    • /
    • 2011
  • Daylighting system is an alternative to the energy crisis and environment change. And it is possible improvement system of Architectural Space Environment. Accordingly, it is very useful system. Because Daylight Duct System of Daylighting System gives high performance for its price, distribution rate is very high. But Daylighting Duct System is hard to accurate control. Accordingly, it is difficult to maintain continuously Daylight Environment in Interior Spaces. Lighting Diffusion System has been developed that it is Applying the principle of Reflector and prism diffuser for maximize the efficiency of lighting of Daylight Duct Systems through this study. And then compare lighting performance of Existing System and new Lighting Diffusion System through producing a mock-up. Thus, this study was carried out for the purpose of verification for excellence. It is that installed Each Daylighting Duct System for performance evaluation in a laboratory of width 4m, length 10m, height 2.5m. And illuminance was measured at noon on winter solstice(December 22) under clean sky. The actual measurement result was in the following. Newly developed lighting Diffusion system was measured maximum illuminance 399, minimum illuminance 221, average illuminance 141. Synthetically, daylight factor, uniformity factor and illuminance distribution were improved more than existing system. As a result, it was confirmed that was improved lighting Environment in Interior Spaces.

  • PDF

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS

  • KANG HYESUNG;JONES T. W.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.405-412
    • /
    • 2004
  • Cosmological shocks form as an inevitable consequence of gravitational collapse during the large scale structure formation and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration (DSA). We have calculated the evolution of CR modified shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of DSA in 1D quasi-parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc $\ge$ 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The CR acceleration efficiency increases with shock Mach number, but it asymptotes to ${\~}50\%$ in high Mach number shocks, regardless of the injection rate and upstream CR pressure. On the other hand, in moderate strength shocks ($M_s {\le} 5$), the pre-existing CRs increase the overall CR energy. We conclude that the CR acceleration at cosmological shocks is efficient enough to lead to significant nonlinear modifications to the shock structures.

이온교환법에 의한 탈질소 공정개발의 기초연구(III) - 회분식 반응기에서의 반응속도론- (Basic Study for Development of Denitrogenation Process by Ion Exchange(III) - A kinetic study in the batch reactor -)

  • 채용곤;이동환;김승일;윤태경;홍성수;이민규
    • 한국환경과학회지
    • /
    • 제9권2호
    • /
    • pp.165-171
    • /
    • 2000
  • A kinetic study for anion exchange was performed for commercially available Cl- type anion exchange resin in use to remove nitrate in water. The obtained results from the batch reactor were applied to the Langmuir and Freundlich models. The constants for Lagmuir model were qmax =29.82 and b=0.202, and for Freundlich model were K=5.509 and n=1.772. Langmuir model showed betterfit than Frendlich model for the experimental results. Ion exchange reaction rate was also calculated and the the approximate first-order reaction, rate constant k1 was 0.16 L/mg.hr. Effective diffusion coefficient was obtained in the range from $9.67$\times$10^{-8} cm^2/sec$ for initial concentration change, and from $6.09$\times$10^{-7} to 3.98$\times$10^{-6} cm^2/sec$ for reaction temperature change. Activation energy during the diffusion was calculated as 26 kcal/mol.

  • PDF