• Title/Summary/Keyword: energy demand forecasting

Search Result 94, Processing Time 0.021 seconds

Development of Peak Power Demand Forecasting Model for Special-Day using ELM (ELM을 이용한 특수일 최대 전력수요 예측 모델 개발)

  • Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.74-78
    • /
    • 2015
  • With the improvement of living standards and economic development, electricity consumption continues to grow. The electricity is a special energy which is hard to store, so its supply must be consistent with the demand. The objective of electricity demand forecasting is to make best use of electricity energy and provide balance between supply and demand. Hence, it is very important work to forecast electricity demand with higher precision. So, various forecasting methods have been developed. They can be divided into five broad categories such as time series models, regression based model, artificial intelligence techniques and fuzzy logic method without considering special-day effects. Electricity demand patterns on holidays can be often idiosyncratic and cause significant forecasting errors. Such effects are known as special-day effects and are recognized as an important issue in determining electricity demand data. In this research, we developed the power demand forecasting method using ELM(Extreme Learning Machine) for special day, particularly, lunar new year and Chuseok holiday.

Regional Electricity Demand Forecasting for System Planning (계통계획을 위한 지역별 전력수요예측)

  • Jo, I.S.;Rhee, C.H.;Park, J.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.292-294
    • /
    • 1998
  • It is very important for electric utility to expand generating facilities and transmission equipments in accordance with the increase of electricity demand. Regional electricity demand forecasting is among the most important step for long-term investment and power supply planning. The main objectives of this paper are to develop the methodologies for forecasting regional load demand. The Model consists of four models, regional economy, regional electricity energy demand, areal electricity energy demand. and areal peak load demand. This paper mainly suggests regional electricity energy demand model and areal peak load demand. A case study is also presented.

  • PDF

Electricity Demand Forecasting based on Support Vector Regression (Support Vector Regression에 기반한 전력 수요 예측)

  • Lee, Hyoung-Ro;Shin, Hyun-Jung
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

Load Forecasting and ESS Scheduling Considering the Load Pattern of Building (부하 패턴을 고려한 건물의 전력수요예측 및 ESS 운용)

  • Hwang, Hye-Mi;Park, Jong-Bae;Lee, Sung-Hee;Roh, Jae Hyung;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1486-1492
    • /
    • 2016
  • This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.

Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model (기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측)

  • Kwak, Young-Hoon;Cheon, Se-Hwan;Jang, Cheol-Yong;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.

Forecasting of Electricity Demand for Fishing Industry Based on Genetic Algorithm approach (유전자 알고리즘에 기반한 수산업 전력 수요 예측에 관한 연구)

  • Kim, Heung-Soe;Lee, Sung-Geun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2017
  • Energy is a vital resource for the economic growth and the social development for any country. As the industry becomes more sophisticated and the economy more grows, the electricity demand is increasing. So forecasting electricity demand is an important for electricity suppliers. Forecasting electricity demand makes it possible to distribute electricity demand. As the market for Negawatt market began to grow in Korea from 2014, the prediction of electricity consumption demand becomes more important. Moreover, power consumption forecasting provides a way for demand management to be directly or indirectly participated by consumers in the electricity market. We use Genetic Algorithms to predict the energy demand of the fishing industry in Jeju Island by using GDP, per capita gross national income, value add, and domestic electricity consumption from 1999 to 2011. Genetic Algorithm is useful for finding optimal solutions in various fields. In this paper, genetic algorithm finds optimal parameters. The objective is to find the optimal value of the coefficients used to predict the electricity demand and to minimize the error rate between the predicted value and the actual power consumption values.

A Study on the Building Energy Analysis and Algorithm of Energy Management System (건물 에너지 분석 및 에너지 관리 시스템 알고리즘에 관한 연구)

  • Han, Byung-Jo;Park, Ki-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.505-510
    • /
    • 2009
  • In this paper, building energy analysis and energy cost of power stand up and demand control over the power proposed to reduce power demand. Through analysis of the load power demand special day were able to apply the pattern. In addition, the existing rate of change of load forecasting to reduce the large errors were not previously available data. And daily schedules and special day for considering the exponential smoothing methods were used. Previous year's special day and the previous day due to the uncertainty of the load and the model components were considered. The maximum demand power control simulation using the fuzzy control of power does not exceed the contract. Through simulation, the benefits of the proposed energy-saving techniques were demonstrated.

A Study on the Process of Energy Demand Prediction of Multi-Family Housing Complex in the Urban Planning Stage (공동주택단지의 개발계획단계 시 에너지 수요예측 프로세스에 관한 연구)

  • Mun, Sun-Hye;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.304-310
    • /
    • 2008
  • Currently energy use planning council system is mandatory especially for the urban development project planned on a specified scale or more. The goal of existing demand prediction was to calculate the maximum load by multiplying energy load per unit area by building size. The result of this method may be exaggerated and has a limit in the information of period load. The paper suggests a new forecasting process based on standard unit household in order to upgrade the limit in demand prediction method of multi-family housing complex. The new process was verified by comparing actual using amount of multi-family housing complex to forecasting value of energy use plan.

  • PDF

Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine (조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측)

  • Kim, Soo-Hyun;Sun, Young-Ghyu;Lee, Dong-gu;Sim, Is-sac;Hwang, Yu-Min;Kim, Hyun-Soo;Kim, Hyung-suk;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.127-133
    • /
    • 2019
  • Electric power demand forecasting is one of the important research areas for future smart grid introduction. However, It is difficult to predict because it is affected by many external factors. Traditional methods of forecasting power demand have been limited in making accurate prediction because they use raw power data. In this paper, a probability-based CRBM is proposed to solve the problem of electric power demand prediction using raw power data. The stochastic model is suitable to capture the probabilistic characteristics of electric power data. In order to compare the mid-term power demand forecasting performance of the proposed model, we compared the performance with Recurrent Neural Network(RNN). Performance comparison using electric power data provided by the University of Massachusetts showed that the proposed algorithm results in better performance in mid-term energy demand forecasting.

A Tutorial: Information and Communications-based Intelligent Building Energy Monitoring and Efficient Systems

  • Seo, Si-O;Baek, Seung-Yong;Keum, Doyeop;Ryu, Seungwan;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2676-2689
    • /
    • 2013
  • Due to increased consumption of energy in the building environment, the building energy management systems (BEMS) solution has been developed to achieve energy saving and efficiency. However, because of the shortage of building energy management specialists and incompatibility among the energy management systems of different vendors, the BEMS solution can only be applied to limited buildings individually. To solve these problems, we propose a building cluster based remote energy monitoring and management (EMM) system and its functionalities and roles of each sub-system to simultaneously manage the energy problems of several buildings. We also introduce a novel energy demand forecasting algorithm by using past energy consumption data. Extensive performance evaluation study shows that the proposed regression based energy demand forecasting model is well fitted to the actual energy consumption model, and it also outperforms the artificial neural network (ANN) based forecasting model.