• Title/Summary/Keyword: energy consumption model

Search Result 924, Processing Time 0.048 seconds

Policy research and energy structure optimization under the constraint of low carbon emissions of Hebei Province in China

  • Sun, Wei;Ye, Minquan;Xu, Yanfeng
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • As a major energy consumption province, the issue about the carbon emissions in Hebei Province, China has been concerned by the government. The carbon emissions can be effectively reduced due to a more rational energy consumption structure. Thus, in this paper the constraint of low carbon emissions is considered as a foundation and four energies--coal, petroleum, natural gas and electricity including wind power, nuclear power and hydro-power etc are selected as the main analysis objects of the adjustment of energy structure. This paper takes energy cost minimum and carbon trading cost minimum as the objective functions based on the economic growth, energy saving and emission reduction targets and constructs an optimization model of energy consumption structure. And empirical research about energy consumption structure optimization in 2015 and 2020 is carried out based on the energy consumption data in Hebei Province, China during the period 1995-2013, which indicates that the energy consumption in Hebei dominated by coal cannot be replaced in the next seven years, from 2014 to 2020, when the coal consumption proportion is still up to 85.93%. Finally, the corresponding policy suggestions are put forward, according to the results of the energy structure optimization in Hebei Province.

EBKCCA: A Novel Energy Balanced k-Coverage Control Algorithm Based on Probability Model in Wireless Sensor Networks

  • Sun, Zeyu;Zhang, Yongsheng;Xing, Xiaofei;Song, Houbing;Wang, Huihui;Cao, Yangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3621-3640
    • /
    • 2016
  • In the process of k-coverage of the target node, there will be a lot of data redundancy forcing the phenomenon of congestion which reduces network communication capability and coverage, and accelerates network energy consumption. Therefore, this paper proposes a novel energy balanced k-coverage control algorithm based on probability model (EBKCCA). The algorithm constructs the coverage network model by using the positional relationship between the nodes. By analyzing the network model, the coverage expected value of nodes and the minimum number of nodes in the monitoring area are given. In terms of energy consumption, this paper gives the proportion of energy conversion functions between working nodes and neighboring nodes. By using the function proportional to schedule low energy nodes, we achieve the energy balance of the whole network and optimizing network resources. The last simulation experiments indicate that this algorithm can not only improve the quality of network coverage, but also completely inhibit the rapid energy consumption of node, and extend the network lifetime.

A Study on Energy Efficiency Plan based on Artificial Intelligence: Focusing on Mixed Research Methodology (인공지능 기반 에너지 효율화 방안 연구: 혼합적 연구방법론 중심으로)

  • Lee, Moonbum;Ma, Taeyoung
    • Journal of Information Technology Services
    • /
    • v.21 no.5
    • /
    • pp.81-94
    • /
    • 2022
  • This study sets the research goal of reducing energy consumption which 'H' University Industry-University Cooperation Foundation and resident companies are concerned with, as well as conducting policy research and data analysis. We tried to present a solution to the problem using the technique. The algorithm showing the greatest reliability in the power of the model for the analysis algorithm of this paper was selected, and the power consumption trend curves per minute and hour were confirmed through predictive analysis while applying the algorithm, as well as confirming the singularity of excessive energy consumption. Through an additional sub-sensor analysis, the singularity of energy consumption of the unit was identified more precisely in the facility rather than in the building unit. Through this, this paper presents a system building model for real-time monitoring of campus power usage, and expands the data center and model for implementation. Furthermore, by presenting the possibility of expanding the field through research on the integration of mobile applications and IoT hardware, this study will provide school authorities and resident companies with specific solutions necessary to continuously solve data-based field problems.

Characteristics of Electric-Power Use in Residential Building by Family Composition and Their Income Level (거주자 구성유형 및 소득수준에 따른 주거용 건물 내 전력소비성향)

  • Seo, Hyun-Cheol;Hong, Won-Hwa;Nam, Gyeong-Mok
    • Journal of the Korean housing association
    • /
    • v.23 no.6
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we draws tendency of the electricity consumption in residential buildings according to inhabitants Composition types and the level of incomes. it is necessary to reduce energy cost and keep energy security through the electricity demand forecasting and management technology. Progressive social change such as increases of single household, the aging of society, increases in the income level will replace the existing residential electricity demand pattern. However, Only with conventional methods that using only the energy consumption per-unit area are based on Energy final consumption data can not respond to those social and environmental change. To develop electricity demand estimation model that can cope flexibly to changes in the social and environmental, In this paper researches propensity of electricity consumption according to the type of residents configuration, the level of income. First, we typed form of inhabitants in residential that existed in Korea. after that we calculated hourly electricity consumption for each type through National Time-Use Survey performed at the National Statistical Office with considering overlapping behavior. Household appliances and retention standards according to income level is also considered.

The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance (준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석)

  • Lee, Dae-Heung;Seo, Ho-Won;Jeong, Jong-Ryeol;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.

Estimation Model of the Carbon Dioxide Emission in the Apartment Housing During the Maintenance period (공동주택 사용부문의 이산화탄소 배출량 추정모델 연구)

  • Lee, Kang-Hee;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.8 no.4
    • /
    • pp.19-27
    • /
    • 2008
  • The carbon dioxide is brought from the energy consumption and regarded as a criteria material to estimate the Global Warming Potential. Building shares about 30% in national energy consumption and affects to environment as much as the energy consumption. But there is not enough data to forecast the amount of the carbon dioxide during the maintenance stage. Various factors are related with the energy consumption and carbon dioxide emission such as the physical area, the building exterior area, the maintenance type and location. Among these factors, the building carbon-dioxide emission can be estimated by the overall building characteristics such as the maintenance area, the number of household, the heating type, etc., The physical amount such as the thickness of the insulation and window infiltration could explained the limited scope and might not be use to estimate the total carbon-dioxide emission energy because the each value could not include or represent the overall building. In this paper, it provided the estimation model of the carbon-dioxide emission, explained by the overall building characteristics. These factors are shown as the maintenance area, no. of household, the heating type, the volume of the building, the ratio of the window to wall area etc., For providing the estimation model of th carbon-dioxide emission, it conducted the corelation analysis to filter the variables and suggested the estimation model with the power model and multiple regression model. Most of the model have a good statistics and fitted in the curve line.

A Measurement and an Analysis of Heating and DHW Energy Consumption in Apartment Buildings with individual Heating Systems (개별난방 공동주택의 난방 및 급탕 에너지사용량 계측 및 특성 분석)

  • Lee, Soo-Jin;Jin, Hye-Sun;Kim, Sung-Im;Lim, Su-hyun;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.15-22
    • /
    • 2018
  • The purpose of this study was to suggest specific evaluation data for heating and DHW energy consumption characteristics through analyzing energy consumption measurement data of gas boiler in Apartment Buildings with individual heating systems. To do this, it was measured both gas flow and electricity for heating and DHW respectively, and then it was analyzed not only characteristics according to energy sources; gas and electricity, but also the effect of various factors on heating and DHW energy consumption. The result of this study were as follows. It was developed the electric energy estimation model of a gas boiler through analysis on patterns by energy sources. And the effective factors for heating and DHW energy consumption were demonstrated as follows: the area for exclusive use, the number of auxiliary heating equipments, the number of occupants, and the number of sanitary fixtures.

A Study on the Energy Conservation Effect of Each Energy Consumption Component In Indoor Swimming Pools (실내수영장의 에너지 소비요소별 에너지 절약효과에 관한 연구)

  • 김영돈;권규동;여명석;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1092-1101
    • /
    • 2002
  • The objective of this study is to develop energy saving strategies for indoor swimming pools and to estimate the effect of each energy saving strategy. For this purpose, field measurements regarding pool water heating energy, domestic hot water heating energy are conducted and a base energy consumption model is implemented using the DOE-2.1E program. The results of the study reveal that 25% of the total pool water heating energy may be saved by using night time pool covers, 27% of the total domestic hot water heating energy may be saved by using a waste water heat recovery system (effic. 60%), and of the total ventilation energy may be saved using an exhaust air heat recovery system (effic. 60%).

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

Impact of Energy Consumption, FDI and Trade Openness on Carbon Emissions in lvory Coast

  • Ange Aurore KADI;Liang LI;David Dauda LANSANA;Joseph FUSEINI
    • Asian Journal of Business Environment
    • /
    • v.14 no.3
    • /
    • pp.23-35
    • /
    • 2024
  • Purpose: The study focuses on the impact of Foreign Direct Investment (FDI), trade openness, and energy consumption on carbon dioxide emissions in the Ivory Coast. It aims to quantitatively evaluate the effects of FDI, energy consumption, and trade openness on CO2 emissions in Ivory Coast. Research design, data, and methodology: The research uses an econometric framework and the Autoregressive Distributed Lag (ARDL) model to analyze time-series data from 1980 to 2021 between these factors. Results: The analysis revealed that FDI significantly impacts the carbon dioxide emissions, FDI showed a negative impact on carbon emissions in the long-run equilibrium term. Also, energy consumption impacted CO2 emissions in the long-run equilibrium term. Conclusion: To mitigate the upsurge of CO2 emissions in the Ivorian context, concrete policy, including enactment and adherence to strict environmental regulations, adoption and prioritization of eco-friendly products and technologies, and investment in renewable energy infrastructure are recommended. The study contributes to the global discussion on sustainable development by offering a model for similar assessments in other emerging nations facing simultaneous economic growth and environmental conservation challenges.