Journal of The Korean Society of Agricultural Engineers
/
v.50
no.4
/
pp.99-109
/
2008
As the price of traditional fossil fuels continue to increase, more people attach importance to the pollution of the environment caused by fossil fuel's burning, developing and using renewable energy resources has become a very important project all over the world. Also, the rural energy planning which is another method to improve energy utilization ratio and reduce environment pollution, is also regarded as a very effective way to reduce the energy consumption. There is a quantity of renewable energy resources and natural tribes in rural area, which is both feasible to develop the renewable energy and the regional energy planning. To carry out this, it is needs to know the area's quantity of renewable energy resources and the total energy consumption. This paper is to find out the relationship between rural energy consumption and rural conditions, and to found a energy consumption model which can conjecture the energy consumption in rural family. and the cost of rural family's energy consumption was founded to conjecture how much money dose it cost in rural family's energy consumption. The energy consumption model was concluded using the surveys of 76 families in 14 villages at the area of Chungcheongbuk-Do(province). The main factors to energy consumption was selected out which were number of family members, acreage of house, acreage of farmland and family's annual income.
International Journal of Computer Science & Network Security
/
v.22
no.7
/
pp.301-307
/
2022
Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.
This paper analyzes the factors of renewable energy consumption in Korea, China and Japan. We consider renewable energy consumption per capita as dependent variable, GDP per capita, $CO_2$ emissions per capita and real oil prices as independent variables. To analyze this model, this paper uses three econometric methods such as OLS, fixed effect model and panel GLS, utilizing data from 1990 to 2006 in Korea, China and Japan. According to the results by OLS for each country, an increase in GDP per capita or $CO_2$ emissions per capita or oil prices leads to an increase in renewable energy consumption. According to the results by fixed effect model, an increase in GDP per capita or $CO_2$ emissions per capita leads to an increase in renewable energy consumption. And real oil prices do not have a significant impacts on this model. According to the results by panel GLS, an increase in real GDP per capita as a proxy of income leads to an increase renewable energy consumption. And both $CO_2$ emissions per capita and real oil prices do not correlated closely with renewable energy consumption. Thus oil is not substituted to renewable energy in Northeast asian countries.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.10
/
pp.6799-6806
/
2015
Electric energy consumption is always followed by the introduction of diversity scale-up and state-of-the-art equipments in logistic centers. In order to analyze the status and the characteristic of the electric energy consumption quantitatively, and also to evaluate the efficiency of the electric energy, this research aims to develop an estimation model of standard electric energy consumption for logistic centers. The proposed model applies the thermodynamics theory so as to effectively reflect the peculiarity that the temperature in the logistic center influences the electric energy consumption. And the model consists of the energy consumed by the refrigerator, which can be subdivided into the heat conducted through the wall, the heat convected by the open doors and the heat lost into the goods, and the electric consumption of the machinery equipments. The model also includes a variety of explanatory variables to support an operator of logistics centers in evaluating the efficiency of energy consumption and establishing improvement strategies for energy efficiency. Application of the model developed in this study is discussed with observed data on energy consumption of a logistics center.
There was a dire need to compile data about energy consumption data by use to analyze residential energy consumption patterns relating to changes in lifestyles, or changes in life behavior. Accordingly, bottom-up model for residential energy consumption by residential use was developed by life behavior classification in an attempt to analyze energy consumption. This paper multiplied each appliance's running times by each appliance by life behavior and built a residential bottoms-up model to figure out the energy consumption of each household. The uses by life behavior were broken down into lighting, heating, cooling, entertainment, obtaining information, hygiene, and cooking.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.6B
/
pp.316-324
/
2007
In this paper we proposed an energy consumption model for IR-UWB wireless sensor networks. The model takes the advantages of PHY-MAC cross layer design, and we used slotted and un-slotted sleeping protocols to compare the energy consumption. We addressed different system design issues that are responsible to energy consumption and proposed an optimum model for the system design. We expect the slotted sleeping will consume less energy for bursty load than that of the un-slotted one. But if we consider latency, the un-slotted sleeping model performs better than the slotted sleeping case.
Journal of Korean Society of Industrial and Systems Engineering
/
v.42
no.1
/
pp.129-136
/
2019
In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.26
no.8
/
pp.394-400
/
2014
Several models and methods have been developed to verify the improvement of energy performance in retrofit buildings. The verification is important to confirm the effectiveness of new technologies or retrofits. Inverse model toolkit proposed by ASHRAE evaluates the changes of the energy performance of retrofit buildings by using actual energy consumption data. In this study, the inverse model toolkit was used to analyze heating and cooling energy performance of an office building. Analyzed coefficients of correlation of actual energy consumption with estimated energy consumption was above 0.92 and well fitted. It was confirmed that energy consumption of natural gas decreased by 43.4% and also that electricity decreased by 13.8%, after the retrofit of the case building. For the energy usage, cooling energy was increased by 7.4%, heating energy was decreased by 42.3%, hot water and cooking were increased by 3.4%, lighting and electronics were decreased by 19.3%, and the total energy was decreased by 18.9%.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.15
no.4
/
pp.287-293
/
2003
This study examined the temperature-dependent regression model of energy consumption based on various measuring period. The methodology employed was to construct temperature-dependent linear regression model of daily energy consumption from one day to three months data-sets and to compare the annual heating energy consumption predicted by these models with actual annual heating energy consumption. Heating energy consumption from a building in Daejon was examined experimentally. From the results, predicted value based on one day experimental data can have error over 100%. But predicted value based on one week experimental data showed error over 30%. And predicted value based on over three months experimental data provides accurate prediction within 6% but it will be required very expensive.
Purpose - This study analyzed the decoupling phenomenon between energy consumption and economic growth in Korea from 1990 to 2021. The main purpose of this study is to suggest policy implications for achieving a low-carbon society and decoupling that Korea must move forward in the face of the climate change crisis. Design/methodology/approach - This study investigated the relationship between energy consumption and economic growth by energy source and sector using the energy-EKC (EEKC) hypothesis which included the energy consumption on the traditional Environmental Kuznets Curve (EKC), and the impulse response function (IRF) model based on Bayesian vector auto-regression (BVAR). Findings - During the analysis period, the trend of decoupling of energy consumption and economic growth in Korea is confirmed starting from 1996. However, the decoupling tendency appeared differently depending on the differences in energy consumption by sources and fields. The results of the IRF model using data on energy consumption by source showed that the impact of GDP and renewable energy consumption resulted in an increase in energy consumption of bio and waste, but a decrease in energy consumption by sources, and the impact of trade dependence was found to increase the consumption of petroleum products. Research implications or Originality - According to the main results, efficient distribution by existing energy source is required through expansion of development of not only renewable energy but also alternative energy. Additionally, in order to increase the effectiveness of existing energy policies to achieve carbon neutrality, more detailed strategies by source and sector of energy consumption are needed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.