• Title/Summary/Keyword: energy company

Search Result 814, Processing Time 0.022 seconds

The Effects of the Residual Ba and Zr on the Acid Pickling in Case of the Recovering of Zr in Pickling Waste Acid through the BaF2 Precipitation Process (BaF2 침전 공정을 통한 폐산세정액 내 Zr 회수 시 잔존 Ba 및 Zr이 산세정에 미치는 영향)

  • An, Chang Mo;Choi, Jeong Hun;Han, Seul Ki;Park, Chul Ho;Kahng, Jong Won;Lee, Young Jun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.97-104
    • /
    • 2017
  • Nuclear fuel cladding tubes are manufactured through pilgering and the annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zirconium (Zr) is dissolved in a HF and $HNO_3$ acid mixture during the process and the pickling waste acid, including the dissolved Zr, is completely discarded after neutralization. This study observes the effects of the residual impurities (Ba) in the pickling solution regenerated from the $BaF_2$ precipitation process on the waste pickling solution. In addition, the concentration of Ba and Zr for the actual nuclear fuel cladding tube process was optimized. The regenerated pickling solution was tested through a pilot plant pickling process device that simulates the commercial pickling process of nuclear fuel cladding tubes, and the pickling efficiency was analyzed through AFM analysis of the roughness of the cladding tube surface.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

The Contribution of Innovation Activity to the Output Growth of Emerging Economies: The Case of Kazakhstan

  • Smagulova, Sholpan;Mukasheva, Saltanat
    • Journal of Distribution Science
    • /
    • v.10 no.7
    • /
    • pp.33-41
    • /
    • 2012
  • The purpose of this study is to analyse the state of the energy industry and to determine the efficiency of its functioning on the basis of energy conservation principle and application of innovative technologies aimed at improving the ecological modernisation of agricultural sectors of Kazakhstan. The research methodology is based on an integrated approach of financial and economic evaluation of the effectiveness of the investment project, based on calculation of elasticity, total costs and profitability, as well as on comparative, graphical and system analysis. The current stage is characterised by widely spread restructuring processes of electric power industry in many countries through introduction of new technical installations of energy facilities and increased government regulation in order to enhance the competitive advantage of electricity market. Electric power industry features a considerable value of creating areas. For example, by providing scientific and technical progress, it crucially affects not only the development but also the territorial organisation of productive forces, first of all the industry. In modern life, more than 90% of electricity and heat is obtained by Kazakhstan's economy by consuming non-renewable energy resources: different types of coal, oil shale, oil, natural gas and peat. Therefore, it is significant to ensure energy security, as the country faces a rapid fall back to mono-gas structure of fuel and energy balance. However, energy resources in Kazakhstan are spread very unevenly. Its main supplies are concentrated in northern and central parts of the republic, and the majority of consumers of electrical power live in the southern and western areas of the country. However, energy plays an important role in the economy of industrial production and to a large extent determines the level of competitive advantage, which is a promising condition for implementation of energy-saving and environmentally friendly technologies. In these circumstances, issues of modernisation and reforms of this sector in Kazakhstan gain more and more importance, which can be seen in the example of economically sustainable solutions of a large local monopoly company, significant savings in capital investment and efficiency of implementation of an investment project. A major disadvantage of development of electricity distribution companies is the prevalence of very high moral and physical amortisation of equipment, reaching almost 70-80%, which significantly increases the operating costs. For example, while an investment of 12 billion tenge was planned in 2009 in this branch, in 2012 it is planned to invest more than 17 billion. Obviously, despite the absolute increase, the rate of investment is still quite low, as the total demand in this area is at least more than 250 billion tenge. In addition, industrial infrastructure, including the objects of Kazakhstan electric power industry, have a tangible adverse impact on the environment. Thus, since there is a large number of various power projects that are sources of electromagnetic radiation, the environment is deteriorated. Hence, there is a need to optimise the efficiency of the organisation and management of production activities of energy companies, to create and implement new technologies, to ensure safe production and provide solutions to various environmental aspects. These are key strategic factors to ensure success of the modern energy sector of Kazakhstan. The contribution of authors in developing the scope of this subject is explained by the fact that there was not enough research in the energy sector, especially in the view of ecological modernisation. This work differs from similar works in Kazakhstan in the way that the proposed method of investment project calculation takes into account the time factor, which compares the current and future value of profit from the implementation of innovative equipment that helps to bring it to actual practise. The feasibility of writing this article lies in the need of forming a public policy in the industrial sector, including optimising the structure of energy disbursing rate, which complies with the terms of future modernised development of the domestic energy sector.

  • PDF

A Study on the Closed-Loop Air Drying Technology for Drying Wastewater Sludge (하수슬러지 건조를 위한 폐루프 공기건조 기술에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.821-827
    • /
    • 2012
  • Air drying is a technology to dry sludge at the ejector and multi cyclone as intaking and blowing air from outside. So, this technology has a weak point that operating fluctuation is large according to an outside conditions as well as energy consumption is also large due to open loop structure. This is to develop the closed-loop air drying system to be built the dehumidifier consisted of condenser, cooler and compressor at rear side of separator of air dryer, as a way to solve some problem. Air is circulation by the method of blowing-drying-dehumidifying-blowing within this system. It is analyzed that an air circulated at closed-loop air drying equipment contains the energy of 50% more compared with open-loop air drying and is operated regularly because of quality maintenance of air to dry sludge. And also it is analyzed that the cost of drying sludge of 1 ton by closed-loop air drying equipment is lower about 35% than conventional equipment. Therefore, this is evaluated by useful drying technology to face an unexpected climatic conditions due to regular operation as well as low energy consumption.

A Study on the Sustainability of New SMEs through the Analysis of Altman Z-Score: Focusing on New and Renewable Energy Industry in Korea (알트만 Z-스코어를 이용한 신생 중소기업의 지속가능성 분석: 신재생에너지산업을 중심으로)

  • Oh, Nak-Kyo;Yoon, Sung-Soo;Park, Won-Koo
    • Journal of Technology Innovation
    • /
    • v.22 no.2
    • /
    • pp.185-220
    • /
    • 2014
  • The purpose of this study is to get a whole picture of financial conditions of the new and renewable energy sector which have been growing rapidly and predict bankruptcy risk quantitatively. There have been many researches on the methodologies for company failure prediction, such as financial ratios as predictors of failure, analysis of corporate governance, risk factors and survival analysis, and others. The research method for this study is Altman Z-score which has been widely used in the world. Data Set was composed of 121 companies with financial statements from KIS-Value. Covering period for the analysis of the data set is from the year 2006 to 2011. As a result of this study, we found that 38 percent of the data set belongs to "Distress" Zone (on alert) while 38% (on watch), summed into 76%, whose level could be interpreted to doubt about the sustainability. The average of the SMEs in wind energy sector was worse than that of SMEs in solar energy sector. And the average of the SMEs in the "Distress" Zone (on alert) was worse than that of the companies of large group in the "Distress" Zone (on alert). In conclusion, Altman Z-score was well proved to be effective for New & Renewable Energy Industry in Korea as a result of this study. The importance of this study lies on the result to demonstrate empirically that the majority of solar and wind enterprises are facing the risk of bankruptcy. And it is also meaningful to have studied the relationship between SMEs and large companies in addition to advancing research on new start-up companies.

Estimation of In-plant Source Term Release Behaviors from Fukushima Daiichi Reactor Cores by Forward Method and Comparison with Reverse Method

  • Kim, Tae-Woon;Rhee, Bo-Wook;Song, Jin-Ho;Kim, Sung-Il;Ha, Kwang-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.114-129
    • /
    • 2017
  • Background: The purpose of this paper is to confirm the event timings and the magnitude of fission product aerosol release from the Fukushima accident. Over a few hundreds of technical papers have been published on the environmental impact of Fukushima Daiichi accident since the accident occurred on March 11, 2011. However, most of the research used reverse or inverse method based on the monitoring of activities in the remote places and only few papers attempted to estimate the release of fission products from individual reactor core or from individual spent fuel pool. Severe accident analysis code can be used to estimate the radioactive release from which reactor core and from which radionuclide the peaks in monitoring points can be generated. Materials and Methods: The basic material used for this study are the initial core inventory obtained from the report JAEA-Data/Code 2012-018 and the given accident scenarios provided by Japanese Government or Tokyo Electric Power Company (TEPCO) in official reports. In this research a forward method using severe accident progression code is used as it might be useful for justifying the results of reverse or inverse method or vice versa. Results and Discussion: The release timing and amounts to the environment are estimated for volatile radioactive fission products such as noble gases, cesium, iodine, and tellurium up to 184 hours (about 7.7 days) after earthquake occurs. The in-plant fission product behaviors and release characteristics to environment are estimated using the severe accident progression analysis code, MELCOR, for Fukushima Daiichi accident. These results are compared with other research results which are summarized in UNSCEAR 2013 Report and other technical papers. Also it may provide the physically based arguments for justifying or suspecting the rationale for the scenarios provided in open literature. Conclusion: The estimated results by MELCOR code simulation of this study indicate that the release amount of volatile fission products to environment from Units 1, 2, and 3 cores is well within the range estimated by the reverse or inverse method, which are summarized in UNSCEAR 2013 report. But this does not necessarily mean that these two approaches are consistent.

Eco-Industrial Park (EIP) Development and Key Technologies for Clean Production (청정 생산을 위한 생태산업단지 구축과 주요기술)

  • Yoo, ChangKyoo;Heo, Soon-Ki;Yoo, Dong Joon;Lee, SeungJun;Shin, Ji Na;Park, Yong Joon;Yoon, Hack Mo;Chun, Hee Dong;Moon, Jeong Ki;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.549-559
    • /
    • 2005
  • Sustainable industrial development which can minimize an ecological effect by the mankind exertion is recently interested due to an environmental contamination and a resource exhaustion problem. An eco-industrial park (EIP) is a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues, including energy, water, and materials. EIP developments which improve a production plant within an eco-friendly greenfield and design a new industrial ecosystem are accomplished recently, which can efficiently re-use the waste and resources from each company within EIP. In this review, the outside and domestic case studies of EIP and cornerstone technologies to develop the EIP, such as energy integration, waste reuse, mass flow analysis, water pinch, and life cycle assessment, are summarized.

Life Cycle Assessment on Process of Wet Tissue Production (물티슈 제조공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • In this study, Life Cycle Assessment (LCA) of wet tissue manufacturing process was performed. The wet tissue manufacturing process consists of preparation of wetting agent (chemical liquid), impregnation of nonwoven fabric into wetting agent and primary and secondary packaging. Data and information were collected on the input and output of the actual process from a certain company and the database of the Korea Ministry of Environment and some foreign countries (when Korean unavailable) were employed to connect the upper and the lower process flow. Based on the above and the potential environmental impacts of the wet tissue manufacturing process were calculated. As a result of the characterization, Ozone Layer Depletion (OD) is 3.46.E-06 kg $CFC_{11}$, Acidification (AD) is 5.11.E-01 kg $SO_2$, Abiotic Resource Depletion (ARD) is $3.52.E+00\;1yr^{-1}$, Global Warming (GW) is 1.04.E+02 kg $CO_2$, Eutrophication (EUT) is 2.31.E-02 kg ${PO_4}^{3-}$, Photochemical Oxide Creation (POC) was 2.22.E-02 kg $C_2H_4$, Human Toxicity (HT) was 1.55.E+00 kg 1,4 DCB and Terrestrial Ecotoxicity (ET) was 5.82.E-04 kg 1,4 DCB. In order to reduce the environmental impact of the manufacturing process, it is necessary to improve the overall process as other general cases and change the raw materials including packaging materials with less environmental impact. Conclusively, the energy consumed in the manufacturing process has emerged as a major issue, and this needs to be reconsidered other options such as alternative energy. Therefore, it is recommended that a process system should be redesigned to improve energy efficiency and to change to an energy source with lower environmental impact. Due to the nature of LCA, the final results of this study can be varied to some extent depending on the type of LCI DB employed and may not represent of all wet tissue manufacturing processes in the current industry.

Commercializing Technology Development of Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell (고분자연료전지용 분리판 상용화 기술개발)

  • Kim, Jeong-Heon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.409-414
    • /
    • 2011
  • To promote the industry of PEMFC, the commercialization of its parts especially bipolar plate is needed. The bipolar plate is one of key parts for PEMFC, which occupies cost portion of 5~8% in the system. To replace the bipolar plate of machined graphite highly costly, the stamped thin matal or the molded carbon composite has been developed. According to the merits and demerits of each material and its forming process, the stamped metallic plate has been considered to the bipolar plate of PEMFC for automotive, and on the other hand, the molded composite plate has been considered to one for building applications. Hankook Tire Co., Ltd. has developed the carbon composite material and the manufacturing process for the bipolar plates. The developed bipolar plates were proved to be fully applicable to PEMFC of building applications in characteristics and performance, and so government strategic project to develop the mass-production technology for bipolar plates was started and is being conducted by the company. Through the government project for obtaining both the commercialization technology and production capacity for the bipolar plates, the price and the performance of domestic PEMFCs are expected to become competitive in international market.

An Assessment of the Alternative Selection of Energy System using AHP (AHP를 이용한 에너지시스템 대안 선정 평가)

  • Lee, Deok Ki;Park, Soo Uk;Yang, Jong Tack;Gim, Bong Jin
    • Environmental and Resource Economics Review
    • /
    • v.12 no.4
    • /
    • pp.611-635
    • /
    • 2003
  • This study deals with the "Dissemination Stage", the final step in the R&D process consisting of R&DDD($R&D^3$ : Research & Development, Demonstration, Dissemination). At the "Dissemination Stage", the newly configured technical design is compared with other alternatives to come up with the most desirable selection. The assessment conducted at this stage is not a simple procedure. It goes through the complex evaluation process in which various elements including economic effects and technical characteristics are considered. The reason for taking such a complex procedure is that the assessment, selection and application of the desirable technical alternative is critical for the company's competitive edge in every field of industrial sectors, thus influencing its survival and continuous growth. This study reviews the AHP method for assessing technical alternatives of the heat supply system design. And, to show the practical validity of the AHP method, it is applied to the evaluation of waste heat system alternatives in the field of energy supply system technology.

  • PDF