• Title/Summary/Keyword: energy change ratio

Search Result 720, Processing Time 0.027 seconds

A Study on Energy Expenditure in Korean Children (한국 아동의 에너지 소비량에 관한 연구)

  • 오승호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.531-538
    • /
    • 1993
  • A 4-week energy balance study was conducted to estimate the energy expenditure (EE) of 16 primary school age boys and girls, 8 to 12 year age, by measurement of energy intakes and changes in body energy (BE) content (intake / balance technique), keeping their normal living pattern and eating behavior. Gross energy intake (GE) and fecal energy (FE) loss was measured by bomb calorimetry. Urinary energy (UE) loss was calculated from nitrogen excreted. Fat mass (FM) was determined from body density estimated from skinfold thickness. Mean constitutional ratio of carbohydrate, protein and fat for the total energy intake was 10.1 $\pm$1.8%, 12.2$\pm$0.1% and 17.1$\pm$2.0% for the boys and 74.0$\pm$1.7%, 10.7$\pm$0.3% and 15.3$\pm$0.5% for the girls, respectively. Fecal energy loss was 5.1% and 4.5% proportion of the gross energy intake for the boys and girls, respectively. Mean daily metabolizable energy estimated by subtract feral and urinary energy loss was 1862$\pm$15kcal for the boys and 1627$\pm$20kcal for the girls. Total body energy change estimated from body composition change over 28 days was increased 1524$\pm$539kcal for the boys and 3622$\pm$718kcal for the girls. Mean daily energy expenditure was 1812$\pm$37kcal(52 $\pm$2kcal/kg of body weight) for the boys and 1487$\pm$25kca1 (52$\pm$2kcal/kg of body weight) for the girls.

  • PDF

A Study on Energy Expenditure in Korean Adolescent (한국 청소년의 에너지 소비량에 관한 연구)

  • Oh, Seung-Ho;Lee, Seon-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 1992
  • A 4-week energy balance study was conducted to estimate the energy expenditure (EE) of 7 high school age men, 16 to 18 year of age, by measurement of energy intakes and changes in body energy (BE) content (intake/balance technique), keeping their normal living pattern and maintenance body weight. Gross energy intake (GE) and fecal energy (FE) loss was measured by bomb calorimetry, Urinary energy (UE) loss was calculated from nitrogen excreted. Fat mass (FM) was determined from body density estimated from skinfold thickness. 1) Mean constitutional ratio of carbohydrate, protein and Int for the total energy intake was $73.7{\pm}0.3%$, $13.5{\pm}0.3%$ and $12.9{\pm}0.5%$, respectively. 2) Fecal energy loss was 2.4% proportion of the gross energy intake. 3) Mean daily metabolizable energy estimated by subtract fecal and urinary energy loss was $2582{\pm}61\;kcal$. 4) Total body energy change estimated from body composition change over 28 days was decreased $4309{\pm}1837kcal$. 5) Mean daily energy expenditure was $2736{\pm}59kcal\;(46{\pm}1kcal/kg$ of body weight).

  • PDF

The Crystallization Characteristics Change in $Li_2O$.$Al_2O_3$.$SiO_2$ System Glass-Ceramics when Varying of RO Ratio and Increasing $R_2O_3$ ($Li_2O$.$Al_2O_3$.$SiO_2$ 계 유리에서 RO치환 및 $R_2O_3$ 첨가에 따른 결정화 특성)

  • 이종민;김무경;최병현;양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.2
    • /
    • pp.3-10
    • /
    • 1985
  • In the study the characteristics change of crystallized $Li_2O$.$Al_2O_3$.$SiO_2$ glass-ceramics when varying RO ratio and increasing Al2O3 were investigated to produce a glass-ceramics with high mechanical strength and low thermal expansion. Parent glass was obtained by melting at 1,350~1,40$0^{\circ}C$ for 3 hours and annealing at 45$0^{\circ}C$ and the various physical characteristics were measured. Results were as follows; 1. When ZnO was replaced by MgO thermal expansion coefficient was lowered when increasing ZnO content. 2. Major crystal phase was $\beta$-spodumene the crystal growth mophology was the three dimensional sphere and the activation energy for crystallization was 54.6 Kcal/mol. 3. Parent glass heat-treated at 95$0^{\circ}C$ for 10 hours had ; a) thermal expansion coeff. of $23.2{\times}10^{-7}$/$^{\circ}C$ b)whiteness of 76 c) microhardness of 1,089kg/$mm^2$

  • PDF

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

Effect of Austenitizing and Quenching·Tempering Temperatures on Tensile and Impact Properties of AISI 51B20 (AISI 51B20강의 인장 및 충격특성에 미치는 오스테나이트화 온도와 퀜칭·템퍼링 온도의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.327-337
    • /
    • 2011
  • Effects of microstructural change, tensile properties and impact property according to the change of austenitizing temperature and tempering temperature of AISI 51B20 steel were examined. Regardless of austenite grain size, lath martensite with needle and packet shapes was found at tempering temperature of $300^{\circ}C{\sim}400^{\circ}C$. The needles of lath martensite changed to parallel packet at tempering temperature of $450^{\circ}C{\sim}600^{\circ}C$. As tempering temperature increased, tensile strength, yield strength and hardness decreased, while elongation, ratio of reduction area and Charpy impact energy increased. Grain size increased when quenching temperature was $930^{\circ}C$. Grain size had prominent effect on the mechanical properties of AISI 51B20 steel. Ratio of tensile strength/yield strength and yield strength autenitized at $880^{\circ}C$ followed by tempering at $350^{\circ}C{\sim}450^{\circ}C$ showed higher values than that of autenization at $930^{\circ}C$ due to fine grain size.

Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.351-365
    • /
    • 2019
  • In this paper, free vibration of Cooper-Naghdi micro sandwich cylindrical shell with saturated porous core and reinforced carbon nanotube (CNT) piezoelectric composite face sheets is investigated by using first order shear deformation theory (FSDT) and modified couple stress theory (MCST). The sandwich shell is subjected to magneto-thermo-mechanical loadings with temperature dependent material properties. Energy method and Hamilton's principle are used for deriving of the motion equations. The equations are solved by Navier's method. The results are compared with the obtained results by the other literatures. The effects of various parameters such as saturated porous distribution, geometry parameters, volume fraction and temperature change on the natural frequency of the micro-sandwich cylindrical shell are addressed. The obtained results reveal that the natural frequency of the micro sandwich cylindrical shell increases with increasing of the radius to thickness ratio, Skempton coefficient, the porosity of the core, and decreasing of the length to radius ratio and temperature change.

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang;Hui Liu;Yong Zhou;Kaixing Liao;Ying Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2147-2157
    • /
    • 2023
  • The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature (이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향)

  • Misong Han;Byoung-Young Choi;Seung-Woo, Lee;Jinyoung Park;Soochun Chae;Jun-Hwan Bang;Kyungsun Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.111-120
    • /
    • 2023
  • The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

Comparison of Nutrient Intakes Regarding Stages of Change in Dietary Fat Reduction for College Students in Gyeonggi-Do (경기지역 일부 대학생의 지방제한 섭취 행동단계에 따른 영양소 섭취상태 비교)

  • Chung, Eun-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1327-1336
    • /
    • 2004
  • This study was conducted to compare nutrient intakes regarding stages of change in dietary fat reduction behavior. Subjects were consisted of healthy 383 college students (250 females and 133 males) in Gyeonggi-Do. Stages of change classified by an algorithm based on 6 items were designed each subjects into one of the 5 stages: precontemplation (PC), contemplation (CO), preparation (PR), action (AC), maintenance (MA). Nutrient intakes were assessed by 24-hr recall method. Regarding the 5 stages of changes, PR stage comprised the largest group (31.1%), followed by AC (28.7%), PC (19.3%), CO (13.8%), MA (7.1%). Female were more belong to either AC or MA. Those in PC and PR had the most energy, fat, saturated fatty acid and cholesterol (except male) and those in AC and MA had the least. These dietary patterns were more distinctive in female than in male. The higher stage of change in dietary fat reduction behavior, the higher self-efficacy. Energy % from fat in PC, CO, PR was too higher than 20%, that of in AC and MA (except male in MA) was within 20%. The average P/S and $\omega$6/$\omega$3 ratio of diet fat for female were similar to the recommended ratio, but the average $\omega$6/$\omega$3 ratio for male was found to be 10.1~12.9, which was beyond the suggested range, 4~10. In male, energy, fat and protein intakes from dinner were significantly different among stages of change, but in female, besides dinner, those from breakfast, lunch and snack were significantly different among stages of change. These results of our study confirm differences in stages of change in fat intake in terms of nutritional status, especially in female, and indicate the need for taking these phases of changes into account in nutrition advice.

Modeling of Fine Sediment Transport under Multiple Breakwaters of Surface-Piercing Type

  • Lee, J. L.;Oh, M. R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.557-562
    • /
    • 2004
  • A surface-piercing barrier model is presented for understanding morphological development in the sheltered region and investigating the main factors causing the severe accumulation. Surface-piercing structures like vertical barriers, surface docks and floating breakwaters are recently favored from the point of view of a marine scenario since they do not in general partition the natural sea. The numerical solutions are compared with experimental data on wave profiles and morphological change rates within a rectangular harbor of a constant depth protected by surface-piercing thin breakwaters as a simplified problem. Our numerical study involves several modules: 1) wave dynamics analyzed by a plane-wave approximation, 2) suspended sediment transport combined with sediment erosion-deposition model, and 3) concurrent morphological changes. Scattering waves are solved by using a plane wave method without inclusion of evanescent modes. Evanescent modes are only considered in predicting the reflection ratio against the vertical barrier and energy losses due to vortex shedding from the lower edge of plate are taken into account. A new relationship to relate the near-bed concentration to the depth-mean concentration is presented by analyzing the vertical structure of concentration. The numerical solutions were also compared with experimental data on morphological changes within a rectangular harbor of constant water depth. Through the numerical experiments, the vortex-induced flow appears to be not ignorable in predicting the morphological changes although the immersion depth of a plate is not deep.

  • PDF