• Title/Summary/Keyword: energy based design

Search Result 3,513, Processing Time 0.035 seconds

Development of analytical modeling for an energy-dissipating cladding panel

  • Maneetes, H.;Memari, A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.587-608
    • /
    • 2009
  • Modern earthquake-resistant design aims to isolate architectural precast concrete panels from the structural system so as to reduce the interaction with the supporting structure and hence minimize damage. The present study seeks to maximize the cladding-structure interaction by developing an energy-dissipating cladding system (EDCS) that is capable of functioning both as a structural brace, as well as a source of energy dissipation. The EDCS is designed to provide added stiffness and damping to buildings with steel moment resisting frames with the goal of favorably modifying the building response to earthquake-induced forces without demanding any inelastic action and ductility from the basic lateral force resisting system. Because many modern building facades typically have continuous and large openings on top of the precast cladding panels at each floor level for window system, the present study focuses on spandrel type precast concrete cladding panel. The preliminary design of the EDCS was based on existing guidelines and research data on architectural precast concrete cladding and supplemental energy dissipation devices. For the component-level study, the preliminary design was validated and further refined based on the results of nonlinear finite element analyses. The stiffness and strength characteristics of the EDCS were established from a series of nonlinear finite element analyses and are discussed in detail in this paper.

사무소 건축물의 공조시스템 대수제어 여부에 따른 LCC 분석 (Life Cycle Costing through Operating Number Control of Air Conditioning Systems in Office Buildings)

  • 박률;정순성
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.981-988
    • /
    • 2002
  • Generally, the term "energy saving is economical" is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing the system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning system. For this reason, this research can provide the economics through operating number control as basic design data. The data obtained through assesment of Life Cycle Cost based on amount of yearly energy use, were produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating/cooling systems based on constant air volume conditioning system, which is widely used for medium and large office buildings in Busan.

Analysis of Economics through Control Method of Heat Source Equipment in Seasonal Air conditioning Building

  • Park, Yool;Kim, Samuel;Jung, Soon-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.209-217
    • /
    • 2003
  • The term “energy saving is economical” is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing a system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning systems. For this reason, this research can provide the economic operating number control method as basic design data. The data obtained through analysis of life cycle cost based on amount of yearly energy use, are produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating$.$cooling systems based on seasonal air conditioning system, which is widely used for medium and large size office buildings in Busan.

Design and dynamic simulation of a molten salt THS coupled to SFR

  • Areai Nuerlan;Jin Wang;Jun Yang;Zhongxiao Guo;Yizhe Liu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1135-1144
    • /
    • 2024
  • With the increasing ratio of renewables in the grid, a low-carbon and stable base load source that also is capable of load tracking is in demand. Sodium cooled fast reactors (SFRs) coupled to thermal heat storage system (THS) is a strong candidate for the need. This research focuses on the designing and performance validation of a two-tank THS based on molten salt to integrate with a 280 MWth sodium cooled fast reactor. Designing of the THS includes the vital component, sodium-to-salt heat exchanger which is a technology gap that needs to be filled, and designing and parameter selection of the tanks and related pumps. Modeling of the designed THS is conducted followed by the description of operation strategies and control logics of the THS. Finally, the dynamic simulation of the designed THS is conducted based on Fortran. Results show, the proposed power system meets the need of the design requirements to store heat for 18 h during a day and provide 500 MWth for peak demand for the rest of the day.

Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode

  • Li, Shen;Tian, Jian-bo;Liu, Yun-he
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.443-454
    • /
    • 2017
  • When eccentrically braced steel frames (EBFs) are in the desired failure mode, links yield at each layer and column bases appear plastically hinged. Traditional design methods cannot accurately predict the inelastic behavior of structures owing to the use of capacity-based design theory. This paper proposes the use of performance-based seismic design (PBSD) method for planning eccentrically braced frames. PBSD can predict and control inelastic deformation of structures by target drift and failure mode. In buildings designed via this process, all links dissipate energy in the rare event of an earthquake, while other members remain in elastic state, and as the story drift is uniform along the structure height, weak layers will be avoided. In this condition, eccentrically braced frames may be more easily rehabilitated after the effects of an earthquake. The effectiveness of the proposed method is illustrated through a sample case study of ten-story K-type EBFs and Y- type EBFs buildings, and is validated by pushover analysis and dynamic analysis. The ultimate state of frames designed by the proposed method will fail in the desired failure mode. That is, inelastic deformation of structure mainly occurs in links; each layer of links involved dissipates energy, and weak layers do not exist in the structure. The PBSD method can provide a reference for structural design of eccentrically braced steel frames.

Ductility-based seismic design of precast concrete large panel buildings

  • Astarlioglu, Serdar;Memari, Ali M.;Scanlon, Andrew
    • Structural Engineering and Mechanics
    • /
    • 제10권4호
    • /
    • pp.405-426
    • /
    • 2000
  • Two approximate methods based on mechanism analysis suitable for seismic assessment/design of structural concrete are reviewed. The methods involve use of equal energy concept or equal displacement concept along with appropriate patterns of inelastic deformations to relate structure's maximum lateral displacement to member and plastic deformations. One of these methods (Clough's method), defined here as a ductility-based approach, is examined in detail and a modification for its improvement is suggested. The modification is based on estimation of maximum inelastic displacement using inelastic design response spectra (IDRS) as an alternative to using equal energy concept. The IDRS for demand displacement ductilities are developed for a single degree of freedom model subjected to several accelerograms as functions of response modification factor (R), damping ratios, and strain hardening. The suggested revised methodology involves estimation of R as the ratio of elastic strength demand to code level demand, and determination of design base shear using $R_{design}{\leq}R$ and maximum displacement, determination of plastic displacement using IDRS and subsequent local plastic deformations. The methodology is demonstrated for the case of a 10-story precast wall panel building.

Influence of design modification of control rod assembly for Prototype Generation IV Sodium-cooled Fast Reactor on drop performance

  • Son, Jin Gwan;Lee, Jae Han;Kim, Hoe Woong;Kim, Sung Kyun;Kim, Jong Bum
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.922-929
    • /
    • 2019
  • This paper presents the drop performance test of the control rod assembly which is one of the main components strongly related to the safety of the prototype generation IV sodium-cooled fast reactor. To investigate the drop performance, a real-sized control rod assembly that was recently modified based on the drop analysis results was newly fabricated, and several free drop tests under different flow rate conditions were carried out. Then the results were compared with those obtained from the previous tests conducted on the conceptually designed control rod assembly to demonstrate the improvement in performance. Moreover, the drop performance tests under several types and magnitudes of seismic loadings were also conducted to investigate the effect of the seismic loading on the drop performance of the modified control rod assembly. The results showed that the effects of the type and magnitude of the seismic loading on the drop performance of the modified control rod assembly were not significant. Also, the drop time requirement was successfully satisfied, even under the seismic loading conditions.

Development of An Integrated Test Facility (ITF) for the Advanced Man Machine Interface Evaluation

  • Oh, In-Seok;Cha, Kyung-Ho;Lee, Hyun-Chul;Sim, Bong-Sick
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.117-122
    • /
    • 1995
  • An Integrated Test Facility(ITF) is a human factors experimental environment to evaluate an advanced man machine interface(MMI) design. The ITF includes a human machine simulator(HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and data analysis and experiment evaluation supporting system(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interlace(MMI) design to change easily the environment of experiments to accomplish the experiment's objects In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment environment for the evaluation of VDU-based control room.

  • PDF

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

가스정압관리소 기반의 복합에너지허브 기본설계 (A Basic Design of Multi Energy Hub Based on Natural Gas Governor Station)

  • 박소진;김형태;김진욱;강일오;유현석;최경식
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.405-410
    • /
    • 2020
  • In this literature, we are introduce a basic design of multi energy hub based on natural gas governor station. Multi energy hub consists of turbo expender generator, phosphoric acid fuel cell, pressure swing adsorption, H2 charging station, utilities and etc. We design a hybrid energy hub system that provides energy using these complex energies, and calculates the amount of electricity that can be produced and the amount of hydrogen charged through the process analysis. TEG and phosphoric acid fuel cell produce 2,290 to 2,380 kW and can supply electricity to 500 houses. In addition, By-product H2 gas is refined to H2 vehicle fuel. This will help maximize the balance of energy demand and supply and improve national energy efficiency by integrating unused decompression energy power generation technology and various power generation/heat source technologies.