• 제목/요약/키워드: energy balance analysis

검색결과 456건 처리시간 0.028초

LNG선 주증기계통의 열평형산전용 전산프로그램 개발 (The Development of a Heat Balance Evaluation Program for the Main Steam Line of LNG Carrier)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.854-861
    • /
    • 1998
  • The demand of LNG as a cheap and clean energy which does not cause an environmental problem has sharply been increased in Korea. In general LNG is stored in a cargo tank specially designed as a liquid state below $-162^{\circ}C$. The main engine of a LNG carrier is generally a steam boiler because LNG is a highly flammable fluid with the possibility of explosion. The main engine of a cargo ship has to be capable of the propulsion load and various auxiliary loads for the safe navigation since it is the primary energy source. Therefore the evaluation of a main boiler's energy capacity is a key design point in the planning of LNG carrier's construction. This research is to develop the computational program for the analysis of steam boiler Heat balance for LNG carrier.

  • PDF

The Effect of Building Morphology on Sea Breeze Penetration over the Kanto Plain - Analysis of Mean Kinetic Energy Balance of Moving Control Volume along Sea Breeze -

  • Sato, Taiki;Ooka, Ryozo;Murakami, Shuzo
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2012
  • In order to use sea breezes to counter the heat island phenomena, i.e. to promote urban ventilation, it is necessary to clarify the effect of building morphology and height on large-scale wind fields. In this study, the sea breeze in the vicinity of the Kanto Plain in Japan is simulated using a mesoscale meteorological model incorporating an urban canopy model, and the inland penetration of sea breezes is accurately reproduced. Additionally, a mean kinetic energy balance within a domain (Control Volume; CV) moving along the sea breeze is analysed. From the results, it is clarified that the sea breeze is interrupted by the resistance and turbulence caused by buildings at the centre of Tokyo. The interruption effect is increased in accordance with the height of these buildings. On the other hand, adverse pressure gradients interrupt in the internal region.

TOKAMAK REACTOR SYSTEM ANALYSIS CODE FOR THE CONCEPTUAL DEVELOPMENT OF DEMO REACTOR

  • Hong, Bong-Guen;Lee, Dong-Won;In, Sang-Ryul
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.87-92
    • /
    • 2008
  • Tokamak reactor system analysis code was developed at KAERI (Korea Atomic Energy Research Institute) and is used here for the conceptual development of a DEMO reactor. In the system analysis code, prospects of the development of plasma physics and the relevant technology are included in a simple mathematical model, i.e., the overall plant power balance equation and the plasma power balance equation. This system analysis code provides satisfactory results for developing the concept of a DEMO reactor and for identifying the necessary R&D areas, both in the physics and technology areas for the realization of the concept. With this system analysis code, the performance of a DEMO reactor with a limited extension of the plasma physics and technology adopted in the ITER design. The main requirements for the DEMO reactor were selected as: 1) demonstrate tritium self-sufficiency, 2) generate net electricity, and 3) achieve a steady-state operation. It was shown that to access an operational region for higher performance, the main restrictions are presented by the divertor heat load and the steady-state operation requirements.

석탄 가스화기 열 및 물질정산에 관한 연구 (A Study on Heat and Mass Balance in a Coal Gasifier)

  • 김봉근;유정석;김유석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.424-428
    • /
    • 2007
  • In the current most tool using heat and mass balance in a coal gasifier is dependent on commercial code such as STANJAN, CHEMKIN. However, in order to keep the self-reliance technology, it is necessary to develop the original design tool available for comprehension and analysis on the spot. So in this study, its own heat and mass balance program is developed on the assumption that the process in a coal gasifier is adiabatic and quasi-equilibrium. The mass balance is calculated by using the chemical equilibrium principle. Also the heat and mass balance according to main operating factors such as temperature, pressure and O2/Coal ratio, was carried in this tool. This heat and mass balance was verified on the basis of the results simulated in STANJAN, commercial codes using similar logic.

  • PDF

화력발전시스템 Heat and Mass Balance 최적설계 자동화기법 (Automation of Heat & Mass Balance Design Optimization Method for Power Plant)

  • 백세현;장지훈;김영주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.181-188
    • /
    • 2019
  • 본 연구에서는 발전시스템의 설계 입출력변수들을 Heat & Mass balance 계산 solver 및 최적화 알고리즘과 연계하고 반복계산 과정을 자동화함으로써 기술 및 경제적 측면을 고려한 최적의 발전시스템 Heat & Mass balance 설계를 도출하는 최적설계 자동화 기법을 개발하였다. 그리고 이에 대한 효과를 분석하기 위하여 발전소 형식별 10종에 대하여 최적설계 기법을 적용한 결과, NPV 및 IRR에 대한 개선 효과를 기대할 수 있었다.

단백질 섭취기준: 단백질 필요량과 추정 방법 및 단백질에너지 적정비율 (Dietary Reference Intakes for Protein: Protein Requirement and Estimation Method, AMDR (Amount of Macronutrient Distribution Range), for Protein)

  • 장순옥
    • Journal of Nutrition and Health
    • /
    • 제44권4호
    • /
    • pp.338-343
    • /
    • 2011
  • This study assessed the current EAR, RDA, and AMDR for protein, which were set in 2005 and revised in 2010 as the DRIs for Koreans. A classical approach to establish the EAR for protein has been the nitrogen balance method. This method has practical limitations and problems in statistical analysis by giving over estimations of nitrogen balance. Thus, the present EAR for protein might be lower than the true requirement. Recent reevaluations of nitrogen balance studies by bilinear regression analysis and the IAAO method have indicated that the EAR of 0.66 g/kg bw/d should be increased by 39% to give 0.92 g/kg bw/d. The AMDR for protein in the Korean DRIs was set at 7-10%, which covers almost the entire population's protein intake. Since the 5th percentile of Korean protein intake is close to 10% of energy and due to the beneficial effects of protein beyond the maintenance of nitrogen equilibrium, the lower range of 7% needs to be increased up to 10%. For practical meal arrangement, 15% of energy as protein, which is close to the average protein intake of Koreans, seems to be proper, although the value is almost two times the EAR.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Power Balance 조건을 이용한 부스트 컨버터의 효율 분석 (Efficiency analysis of the boost converter using power balance condition)

  • 이국선;최익;최주엽;송승호;안진웅
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.120-127
    • /
    • 2011
  • Solar array has the following nonlinear characteristic, such as whose output current increases, output voltage is reduced. For this reason, boost converter with solar array system is always controlled to remain on the maximum power point of the solar array. In this case, we are not focused on the output of the solar array and not consider efficiency of the boost converter, which is assumed reliable. But efficiency of the converter also should be considered, which affects the total efficiency of the overall solar energy system. In this paper, efficiency calculation of the boost converter using power balance method is proposed, which will be used for a powerful reference before hardware realization.

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.