• Title/Summary/Keyword: energy and mineral resources

Search Result 714, Processing Time 0.025 seconds

Mortar Characterization using Electrical Resistivity Method (모르타르의 전기비저항 특성)

  • Farooq, Muhammad;Park, Sam-Gyu;Song, Young-Soo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.215-220
    • /
    • 2009
  • Cement based mortars are widely used to improve the soft ground of a dam site, highway construction, and karst voids. The mechanical properties of the mortar are well documented in literature, however very limited work is done on their physical properties such as electrical resistivity which is considered as one of the most important physical property known while improving the soft grounds. In this paper, electrical resistivity of the Portland cement mortars is examined by employing the Wenner technique. Cylindrical specimens with various water/cement ratios (w/c) ranges from 0.35, 0.45, 0.50 and 0.65 were cast and tested. The test results showed that the electrical resistivity of the mortar increases with increasing curing time and decreases with increasing water content and w/c. A reasonable, good relation was found between electrical resistivity and compressive strength of mortar.

Review on bioleaching of uranium from low-grade ore (저품위(低品位) 우라늄철(鑛)의 미생물 침출법(浸出法))

  • Patra, A.K.;Pradhan, D.;Kim, D.J.;Ahn, J.G;Yoon, H.S.
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.30-44
    • /
    • 2011
  • This review describes the involvement of different microorganisms for the recovery of uranium from the ore. Mainly Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching of uranium generally follows indirect mechanism in which bacteria provide the ferric iron required to oxidize $U^{4+}$. Commercial applications of bioleaching have been incorporated for extracting valuable metals, due to its favorable process economics and reduced environmental problems compared to conventional metal recovery processes such as smelting. At present the uranium is recovered through main bioleaching techniques employed by heap, dump and in situ leaching. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.

21세기 광물자원과 우리의 환경

  • O Min Su
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.53-67
    • /
    • 2002
  • As in the past, we are concerned today with the magnitudes of mineral resources and the adequacy of these resources to meet future needs. In looking at global resource issues, we should consider the need for the resource, its supply, and the environmental consequences of using it. The need for a resource can become a resource dependency, especially as the global population expands and each of us becomes increasingly dependent upon hundreds of natural materials. Therefore, our great mineral consumption makes the human population a true 'Geologic Force', which will be even more significant in the future when the global population is projected to reach alarming proportions. Although our supplies of mineral resources probably will be sufficient for the 21s1 century, the uneven distribution of minerals in the Earth's crust almost certainly will continue to be a major problem The most likely result will be major shifts in both prices and sources of supply of many mineral resources. As for energy resources, we must avoid an obsessive dependency on one fuel and expand instead to thor energy resources. Finally, because the use of resources affects the environment, we need to focus on resource exploitation and global pollution, particularly in regard to ground water and arable land. We must manage our resources so as to be in balance with our environment. And the accelerated industrialization of South Korean economy over the last three decades has resulted in the mass consumption of nuneral commodities. South Korea has around 50 useful mineral commodities for the mineral industry, among 330 kinds of minerals described. The component ratio of the mining industry sector of the gross national production(GNP) in South Korea dropped from $1.2\%\;in\;1971\;to\;0.34\%$ in 1997 due to the rapid growth of other industries In the countxy. During the period from 1971 to 1997, the average growth rate of mineral consumption in South Korea was $9.13\%$ yearly and that of GNP per capita was $14.97\%$. The mineral consumptions per capita showed a continual Increase during the last 30 years as follows(parenthesis. GNP per capita): 0.99 metric tons in 1971($\$289$), 3.83 metric tons in 1989($\$5,210$), 6.11 metric tons in 1995 ($\$10,037$), and 6.66 metric tons in 1997($9,511). The total amount of mineral consumption in South Korea was 33 million tons of 32 mineral commodities in 1971, and 306 million metric tons of 47 mineral commodities In 1997.

  • PDF

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

Rapid Sintering and Synthesis of TiAl by High-Frequency Induction Heating and its Mechanical properties (고주파유도 가열에 의한 나노구조의 TiAl 급속소결과 합성 및 기계적 성질)

  • Kim, Na-Ri;Na, Kwon-Il;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.989-994
    • /
    • 2010
  • A nanopowder of TiAl was synthesized by high energy ball milling. Dense nanostuctured TiAl was consolidated using a high frequency induction heated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. Properties of the TiAl obtained using the two methods were compared. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 40 nm, 20 nm, and $630kg/mm^2$, $700kg/mm^2$, respectively.

Rapid Sintering of TiCu by Pulsed Current Activated Heating and its Mechanical Properties (펄스전류활성 가열에 의한 나노구조의 TiCu 급속소결과 기계적 성질)

  • Du, Song-Lee;Kim, Na-Ri;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.922-928
    • /
    • 2010
  • Nanopowder of TiCu was synthesized by high-energy ball milling. A dense nanostructured TiCu was consolidated using a pulsed-current activated sintering method within 1 minute from mechanically synthesized powders of TiCu and horizontally milled powders of Ti+Cu. The grain size and hardness of the TiCu sintered from horizontally milled Ti+Cu powders and high-energy ball-milled TiCu powder were 68 nm, 27 nm and $490kg/mm^2$, $600kg/mm^2$, respectively.

Mechanical Properties and Fabrication of TiAl Alloy by Pulsed Current Activated Sintering (펄스전류 활성 소결에 의한 나노구조의 TiAl 합금 제조와 기계적 성질)

  • Du, Song-Lee;Kim, Na-Ri;Kim, Won-Baek;Cho, Sung-Wook;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.373-378
    • /
    • 2010
  • Nanostuctured TiAl powder was synthesized by high energy ball milling. A dense nanostuctured TiAl was consolidated using pulsed current activated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 35 nm, 20 nm and 450 kg/$mm^2$, 630 kg/$mm^2$, respectively.

The Principles and Practice of Induced Polarization Method (유도분극 탐사의 원리 및 활용)

  • Kim, Bitnarae;Nam, Myung Jin;Jang, Hannuree;Jang, Hangilro;Son, Jeong-Sul;Kim, Hee Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.100-113
    • /
    • 2017
  • Induced polarization (IP) method is based on the measurement of a polarization effect known as overvoltage of the ground. IP techniques have been usually used to find mineral deposits, however, nowadays widely applied to hydrogeological investigations, surveys of groundwater pollution and foundation studies on construction sites. IP surveys can be classified by its source type, i.e., time-domain IP estimating chargeability, frequency-domain IP measuring frequency effect (FE), and complex resistivity (CR) and spectral IP (SIP) measuring complex resistivity. Recently, electromagnetic-based IP has been studied to avoid the requirement for spike electrodes to be placed in the ground. In order to understand IP methods in this study, we: 1) classify IP surveys by source type and measured data and illustrate their basic theories, 2) describe historical development of each IP forward modeling and inversion algorithm, and finally 3) introduce various case studies of IP measurements.

Consequences and Remediation of Climate change with Focus on Clean Water and Sanitation in India

  • Khan, Mohammad Danish;Lee, Seungmin;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.65-75
    • /
    • 2018
  • The emission of greenhouse gases mainly carbon dioxide and methane is the result of rapid industrialization to meet the demands of ever-growing population. This has resulted in an increase of global temperature which in turn is responsible for severe environmental, social, ecological and economic losses, commonly known as to as 'climate change'. This study attempts to highlight the impacts of climate change mainly focussing on water contamination, sanitation and open defecation in India. The requirement for the instantaneous employment of environment friendly technologies along with improved sanitary system has been discussed. Various other issues which are also linked to climate change that need further management like managing water resources, deterioration in human health, economic losses, modification and successful implementation of policies have been pointed out. Furthermore, stress has been made for the urgent adaptation and rethinking for making strategies along with the involvement of women in order to cop up challenges offered by climate change.

Physical Properties of Mineral Hydrate Insulation Used Desulfurization Gypsum (탈황석고를 사용한 미네랄 하이드레이트 단열소재의 물리적 특성 연구)

  • Park, Jae-Wan;La, Yun-Ho;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.291-296
    • /
    • 2014
  • For the purpose of energy consumption and green-house gas reduction from building, new insulation materials with improved thermal property have been developed and used. Among new insulation materials, mineral hydrate which compensates for the defects of existing materials is using as a prominent insulation material. The fabrication method of mineral hydrate is similar to that of ALC for building structure but mineral hydrate is only used for insulation. The raw materials that make up of mineral hydrate are cement, lime and anhydrite. Especially anhydrite is all dependant on imports. In this study, Desulfurization Gypsum(DG), by-product of oil plant, was used for replacing for imported anhydrite and waste recycling. DG substituted all of anhydrite and a part of lime. Mineral hydrate used DG had analogous thermal and physical properties, compared to existing mineral hydrate.