• Title/Summary/Keyword: energy and mineral resources

Search Result 713, Processing Time 0.037 seconds

Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection (오염원에 따른 오염지역 물성 변화 및 물리탐사 적용 사례 소개)

  • Yu, Huieun;Kim, Bitnarae;Song, Seo Young;Cho, Sung Oh;Caesary, Desy;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.132-148
    • /
    • 2019
  • Recently, safety and environmental concerns have become major social issues. Especially, a special underground-safety law has been made and enacted to prevent ground subsidence around construction sites. For environmental problems, several researches have started or will start on characterization of contaminated sites, in-situ environmental remediation in subsurface, and monitoring of remediation results. As a part of the researches, geophysical surveys, which have been mainly applied to explore mineral resources, geological features or ground, are used to characterize not only contaminated areas but also fluid flow paths in subsurface environments. As a basic study for the application of geophysical surveys to detect contamination in subsurface, this paper analyzes previous researches to understand changes in geophysical properties of contaminated zones by various contaminants such as leachate, heavy metals, and non-adequate phase liquid (NAPL). Furthermore, this paper briefly introduces how geophysical surveys like direct-current electrical resistivity, induced polarization and ground penetration radar surveys can be applied to detect each contamination, before analyzing case studies of the applications in contaminated areas by NAPL, leachate, heavy metal or nitrogen oxides.

Factors affecting waterproof efficiency of grouting in single rock fracture

  • Lee, Hang Bok;Oh, Tae-Min;Park, Eui-Seob;Lee, Jong-Won;Kim, Hyung-Mok
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.771-783
    • /
    • 2017
  • Using a transparent fracture replica with aperture size and water-cement ratio (w/c), the factors affecting the penetration behavior of rock grouting were investigated through laboratory experiments. In addition, the waterproof efficiency was estimated by the reduction of water outflow through the fractures after the grout curing process. Penetration behavior shows that grout penetration patterns present similarly radial forms in all experimental cases; however, velocity of grout penetration showed clear differences according to the aperture sizes and water-cement ratio. It can be seen that the waterproof efficiency increased as the aperture size and w/c decreased. During grout injection or curing processes, air bubbles formed and bleeding occurred, both of which affected the waterproof ability of the grouting. These two phenomena can significantly prevent the successful performance of rock grouting in field-scale underground spaces, especially at deep depth conditions. Our research can provide a foundation for improving and optimizing the innovative techniques of rock grouting.

The effects of current density and nickel content on copper electrowinning by energy saving system (에너지절약형 동(Cu)전해채취 및 전류밀도의 영향)

  • Lee, Hoo-In;Lee, Jae-Chun;Park, Jin-Tae;Kim, Min-Seuk;Sohn, Jeong-Soo;Koyama, Kazuya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.386-387
    • /
    • 2006
  • This study is about the recycling technology of scrap a PCB(printed circuit board) produced in home appliances or automobile industry. And we develop the recycling technology of cooper (Cu)which is contained to leaching solution. In stead of electrolytic collecting in existing sulphuric atmosphere, we apply process using the ammonia solution which is used in economizing energy. So m the process of electrolyzing scrap a PCB through the leaching and separation, we examine the effect of the nickel contained to the solution and the cooper degree of purity which is changed according to current density.

  • PDF

A Study on the Mine Development of North Korea and the Inter-Korean Mineral Resources Cooperation (북한의 광물자원개발과 남북간 자원협력방안)

  • Kim You-Dong;Park Hong-Soo;Kim Seong-Yong;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.197-206
    • /
    • 2005
  • North Korea is plentiful in the mineral resources as magnesite, gold, zinc, iron, rare metal, and coal resources compared to South Korea and has 6 industrial zones which are located nearby to the mineralized areas. The industrial zones are provided with a sound infrastructures and accumulation of advanced technology. As a huge mineral and energy consuming country, South Korea imports mineral and coal resources equivalent to almost 8 trillion won annually. Inter-Korean cooperation for development of mineral resources in North Korea will be improved by the practical use of the North Korea's plentiful mineral resources, infiastructures related to development and refinement, and basic geo-technology, which would be considered toward combining with South Korean capital and Russian geo-technologies.

The Green Cement for 3D Printing in the Construction Industry

  • Park, Joochan;Jung, Euntae;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.50-56
    • /
    • 2020
  • Currently, 3D printing technology is a new revolutionary additive manufacturing process that can be used for making three dimensional solid objects from digital films. In 2019, this 3D printing technology spreading vigorously in production parts (57%), bridge production (39%), tooling, fixtures, jigs (37%), repair, and maintenance (38%). The applications of 3D printing are expanding to the defense, aerospace, medical field, and automobile industry. The raw materials are playing a key role in 3D printing. Various additive materials such as plastics, polymers, resins, steel, and metals are used for 3D printing to create a variety of designs. The main advantage of the green cement for 3D printing is to enhance the mechanical properties, and durability to meet the high-quality material using in construction. There are several advantages with 3D printing is a limited waste generation, eco-friendly process, economy, 20 times faster, and less time-consuming. This research article reveals that the role of green cement as an additive material for 3D printing.

Electrical pulse separation of construction materials (전기적 펄스를 이용한 폐콘크리트로부터의 재생골재 분리 연구)

  • You, Kwang-Suk;Ahn, Ji-Whan;Fujita, Toyohisa;Han, Gi-Chon
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.109-112
    • /
    • 2005
  • The electrical pulse separation of concrete samples for the recycling purpose has been investigated by the electrical disintegration method using the discharged high voltageimpulse. First, when the consumed energy increased in electrical crushing, fracture section area increased clearly. This result suggests that crushing energy was consumed efficiently. Secondly, when conventional crushing after electrical disintegration is compared with only conventional crushing, gravels are more stable after electrical crushing. Thus, electrical crushing makes it easy to recover gravels from wasted concrete. In the next year, more efficient recovery of gravel for wasted concrete by electrical disintegration will be investigated. Thus, actual wasted concrete crushing by electrical separation and combination of conventional crushing will be carried out.

  • PDF

Extraction of Precipitated Calcium Carbonate from Oyster Shell waste and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, we reported that the influence of advanced functional mineral filler calcium carbonate ($CaCO_3$) extracted from oyster shell waste, which are rich mineral sources of $CaCO_3$. Oyster Shells, available in abundance, have no eminent use and are commonly regarded as waste. Their improper disposal causes a significant level of environmental concern and also results in a waste of natural resources. Recycling shell waste could potentially eliminate the disposal problem, and also turn an otherwise useless waste into high value added products. Oyster shell waste calcination process to produce pure lime (CaO) which have good anti-microbial property for waste water treatment and then focuses on its current applications to treat the coffee waste and its effluents for biological treatment and utilization as a fertilizers.

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources (바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성)

  • Jeon, Hoseok;Han, Yosep;Baek, Sangho;Davaadorj, Tsogchuluun;Go, Byunghun;Jeong, Dohyun;Chu, Yeoni;Kim, Seongmin
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

A Study on Subsidence of Offshore Wind Power System Foundation (해상풍력시스템의 기초침하에 관한 연구)

  • Seo, Dong-Il;Shin, Sung-Ryul;Lim, Jong-Se;Yoon, Ji-Ho;Jang, Won-Yil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.1020-1027
    • /
    • 2007
  • As a national enterprise has been expanded over and over, the worldwide energy consumption has been growing necessarily. Moreover, as recently energy spendings are on the increase in countries such as BRICs, it has resulted that a rise in the price of both oil and mineral resources and instability between supply and demand become serious issue in the world resources market. The recent high price of oil and mineral resources have a deep influence on economy and threaten energy security and even national prosperity of Korea. In addition to these, exhaustion of fossil fuels and the enhanced greenhouse effect which results from gases emitted as a result of fossil fuels has been in serious questions which occur a great deal of effort to secure clean energy resources all around the world. As it is considerably possible for Korea that the Kyoto protocol may come into effect on and after 2013, it is essential to require the technological development to promote energy efficiency as well as to develope safe and renewable energy resources. The wind energy technology which converts kinetic energy into electrical energy has been in the focus of the world's attention. In this study, two-dimensional numerical analyses were conducted to observe subsidence aspects of the sea bottom on differently applied loads and various ground conditions.

Trends and Prospects of Domestic and Overseas Studies on Earth Energy Storage Minerals (지구 에너지저장광물 국내외 연구동향 및 전망)

  • Kim, Jung-min;Kim, Seong-Yong;Ahn, Eunyoung;bae, Junhee;Lee, Jae-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.437-446
    • /
    • 2020
  • The rapid demand for electric vehicles and energy storage systems has increased interest in energy storage devices worldwide. New technological alternatives are needed to reliably supply energy storage mineral resources such as lithium and vanadium, which are key materials for energy storage devices. Already, research and development activities are taking place in various countries on technologies that can directly secure lithium and vanadium. Accordingly, it is very important to analyze each country's technological trends through patent and paper analysis to establish effective research and development strategies and to set future technological development directions. This study analyzed trends in the development of new technologies and the current status of research and development at home and abroad through patent data from Korea, the United States, Europe, and Japan that were disclosed or registered from 1970 to October 2019, and the data searched for papers from January 2000 to October 2019. According to the analysis, the current growth stage of the technology related to energy storage minerals is in the beginning stage. Therefore, it is believed that a strategy to rapidly upgrade technology by combining the development of new technologies and demonstration of developed technologies is needed in order to lead the technology market and strengthen the competitiveness of technologies.