DOI QR코드

DOI QR Code

Trends and Prospects of Domestic and Overseas Studies on Earth Energy Storage Minerals

지구 에너지저장광물 국내외 연구동향 및 전망

  • Kim, Jung-min (Future Geo-Strategy Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • Kim, Seong-Yong (Future Geo-Strategy Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • Ahn, Eunyoung (Future Geo-Strategy Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • bae, Junhee (Future Geo-Strategy Research Center, Korea Institute Geoscience and Mineral Resources) ;
  • Lee, Jae-Wook (Future Geo-Strategy Research Center, Korea Institute Geoscience and Mineral Resources)
  • 김정민 (한국지질자원연구원 미래전략연구센터) ;
  • 김성용 (한국지질자원연구원 미래전략연구센터) ;
  • 안은영 (한국지질자원연구원 미래전략연구센터) ;
  • 배준희 (한국지질자원연구원 미래전략연구센터) ;
  • 이재욱 (한국지질자원연구원 미래전략연구센터)
  • Received : 2020.09.09
  • Accepted : 2020.10.13
  • Published : 2020.10.31

Abstract

The rapid demand for electric vehicles and energy storage systems has increased interest in energy storage devices worldwide. New technological alternatives are needed to reliably supply energy storage mineral resources such as lithium and vanadium, which are key materials for energy storage devices. Already, research and development activities are taking place in various countries on technologies that can directly secure lithium and vanadium. Accordingly, it is very important to analyze each country's technological trends through patent and paper analysis to establish effective research and development strategies and to set future technological development directions. This study analyzed trends in the development of new technologies and the current status of research and development at home and abroad through patent data from Korea, the United States, Europe, and Japan that were disclosed or registered from 1970 to October 2019, and the data searched for papers from January 2000 to October 2019. According to the analysis, the current growth stage of the technology related to energy storage minerals is in the beginning stage. Therefore, it is believed that a strategy to rapidly upgrade technology by combining the development of new technologies and demonstration of developed technologies is needed in order to lead the technology market and strengthen the competitiveness of technologies.

전기차, 에너지저장시스템의 수요급증으로 에너지 저장장치에 대한 관심이 세계적으로 증가해 왔다. 에너지 저장장치의 핵심원료인 리튬과 바나듐 등과 같은 에너지저장광물 자원을 안정적으로 공급하기 위하여 새로운 기술적 대안이 필요하다. 이미 리튬과 바나듐을 직접 확보할 수 있는 기술에 대한 여러 국가들의 연구개발 활동이 이루어지고 있다. 이에 따라 효과적인 연구개발 전략을 수립하기 위해서 특허 및 논문 분석을 통해 각 국의 기술동향을 분석하고 향후 기술발전방향을 설정하는 것이 중요하다. 본 연구는 1970년부터 2019년 10월까지 출원 공개 또는 출원 등록된 한국, 미국, 유럽, 일본의 특허자료와 2000년 1월부터 2019년 10월까지의 논문을 대상 검색된 자료를 통해 신기술 개발동향 및 국내외 연구개발 현황을 분석하였다. 분석결과, 현재 에너지저장광물과 관련된 기술의 성장단계는 태동기 단계에 있는 것으로 분석되었다. 따라서 기술시장 선도와 기술 경쟁력 강화를 위해 새로운 기술의 개발과 개발된 기술에 대한 실증을 병행하여 빠르게 기술을 고도화 하는 전략이 필요하다고 사료된다.

Keywords

References

  1. Breitzman, A., 2003, A discussion of patent activity and citation statistics, The Lemelson-MIT Program Workshop Paper, 16-21.
  2. Carpenter, M.P., Narin, F. and Woolf, P., 1981, citation rates to technologically important patents, World Patent Information, 3, 160-163. https://doi.org/10.1016/0172-2190(81)90098-3
  3. Cho, S.J., 2020, Development and potential resources prediction of exploration technology for energy storage minerals bearing vanadium (V) in Korea, Research Project Proposal of KIGAM's Basic Research Program, p. 93.
  4. Choi, C.Y., Kim, S.H., Kim, R.Y., Choi, Y.S., Kim, S.W., Jung, H.Y., Yang, J.H., and Kim, H.T., 2017, A review of vanadium electrolytes for vanadium redox flow batteries. Renewable and Sustainable Energy Reviews, 69, 263-274. https://doi.org/10.1016/j.rser.2016.11.188
  5. Choi, Y.H., Park, Y.R., and Noh, J.H., 2014. Genesis of Boam lithium deposits in Wangpiri, Uljin. Journal of the Geological Society of Korea, 50(4), 489-500. https://doi.org/10.14770/jgsk.2014.50.4.489
  6. Cunha, A., Martins, J., Rodrigues, N., and Brito, F.P., 2015, Vanadium redox flow batteries: a technology review. International Journal of Energy Research, 39, 889-918. https://doi.org/10.1002/er.3260
  7. Jeon, H.S., 2020, Technological development of mining/smelting/utilization for energy storage minerals bearing vanadium (V) in Korea, Research Project Proposal of KIGAM's Basic Research Program, p.257.
  8. Jeon, H.S., Baek, S.H., Kim, S.M., and Go, B.H., 2018, Status of reserves and development technology of rare earth metals in Korea. Journal of the Korean Society of Mineral and Energy Resources Engineers, 55(1), 67-82. https://doi.org/10.12972/ksmer.2018.55.1.067
  9. Jordens, A., Cheng, Y.P., and Waters, K.E., 2013. A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97-114. https://doi.org/10.1016/j.mineng.2012.10.017
  10. Ju. J., Fu, H.G., Wei, S.Z., Sang, P., Wu, Z.W., Tang, K.Z., and Lei, Y.P., 2018. Effects of Cr and V additions on the microstructure and properties of hign-vanadium wear- resistant alloy steel. Ironmaking and Steelmaking, 45(2), 176-186. https://doi.org/10.1080/03019233.2016.1250491
  11. Karki, M.M., 1997, Patent citation analysis: A policy analysis tool. World Patent Information, 19(4), 269-272. https://doi.org/10.1016/S0172-2190(97)00033-1
  12. Kim, J.S., 2013, Research and development for the recovery of uranium and vanadium from Korean black shale ore. Journal of the Korean Institute of Resources Recycling, 22(1), 3-10. https://doi.org/10.7844/kirr.2013.22.1.3
  13. Kim, J.M. and Park, H.S., 2017. Experimental analysis of discharge characteristics in vanadium redox flow battery. Applied Energy, 206, 451-457. https://doi.org/10.1016/j.apenergy.2017.08.218
  14. Kim, S.M. and Jeon, H.S., 2019, Separation processes for self-sufficient recovery of vanadium resources in Korea, Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(3), 292-302. https://doi.org/10.32390/ksmer.2019.56.3.292
  15. KIPO (Korea Institute of Patent Information), 2007, Indicators and techniques for patent information analysis, Patent 21, 72, 2-19.
  16. Lee, C.H., Lee, H.K., and Shin, M.A., 1997, Barium-vanadium muscovite of coaly metapelite in the Hoenam area of the Ogcheon Supergroup, Korea. Journal of the Geological Society of Korea, 33(2), 55-64.
  17. Lee, G.J., Kim, S.Y., and Koh, S.M., 2013, Potential evaluation of the Uljin lithium deposit. Mineral and Industry, 26, 32-36.
  18. Lee, H.B., 2009, Domestic vanadium stock adequacy. Mineral and Industry, 22(1), 60-70.
  19. Lmtiaz, M., Rizwan, M.S., Xiong, S., Li, H., Ashraf, M., Shahzad, S.M., Shahzad, M., Rizwan, M., and Tu, S., 2015, Vanadium, recent advancements and research prospects: A review. Environment International, 80, 79-88. https://doi.org/10.1016/j.envint.2015.03.018
  20. Park, G.S., Cho. S.J., Oh, H.J. and Lee, C.W., 2014, Mineral potential mapping of Gagok mine using 3D geological modeling. Journal of the Korean Earth Science Society, 36(6), 412-421.
  21. Park, K.H. and Sohn, J.S., 2008, Status and prospect of vanadium resources and processing. Trends in Metals and Materials Engineering, 21(4), 4014.
  22. Park, K.R. and Park, H.J., 2018, Analysis of research trend on conceptual change in Earth science. Journal of the Korean Earth Science Society, 39(2), 193-207. https://doi.org/10.5467/JKESS.2018.39.2.193
  23. Shin, D.H., 2000, Past, present, and future of earth science education research in Korea. Journal of the Korean Earth Science Society, 21(4), 479-487.
  24. Tang, J., Zhang, Y., Bao, S., and Liu, C., 2016, Pre-concentration of vanadium-bearing mica from stone coal by roasting-flotation. Physicochemical Problems of Mineral Processing, 53(1), 402-412.
  25. .Wang, M., Huang, S., Chen, B., and Wang, X., 2018, A review of processing technologies for vanadium extraction from stone coal. Mineral Processing and Extractive Metallurgy, 1-9.
  26. Xu, C., Zhang, Y., Liu, T., and Huang, J., 2017, Characterization and pre-concentration of low-grade vanadium titanium magnetite ore. Minerals, 7(8), 137-148. https://doi.org/10.3390/min7080137
  27. Yan, B., Wang, D., Wu, L., and Dong, Y., 2018, A novel approach for pre-concentrating vanadium from stone coal ore. Minerals Engineering, 125, 231-238 https://doi.org/10.1016/j.mineng.2018.06.005