• 제목/요약/키워드: energy and mineral resources

검색결과 714건 처리시간 0.022초

초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리 (The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction)

  • 김태형;이진균;정철우;김지현;이민희;김선옥
    • 자원환경지질
    • /
    • 제51권4호
    • /
    • pp.359-370
    • /
    • 2018
  • 기존 연구에서 초임계$CO_2$($scCO_2$)-물-순활골재 반응을 이용한 폐콘크리트 순환골재의 중성화(pH 저감) 처리에서 가장 문제시되었던 오랜 처리시간의 한계(최대 50일)를 최소 3시간까지 단축하는 배치실험과 칼럼실험을 수행하였다. 모르타르(골재를 포함하지 않은 시멘트+모래 혼합체)와 모르타르에 골재를 포함하는 2 종류의 순환골재를 실험에 사용하였다. 입자 크기별로 분류한 세 종류의 폐모르타르 시료에 대하여 $scCO_2$-물-폐모르타르 반응 시간을 1시간부터 24시간까지 다하게 설정하여 반응시킨 후, 폐모르타르의 pH가 지속적으로 9.8 이하로 낮게 유지되는 최소 반응시간을 결정하는 용출 배치실험을 실시하였다. 실제 현장에서 다량의 순환골재를 중성화 처리하는 경우 비평형상태에서 용출이 발생하는데, 이러한 kinetic 효과를 고려한 순환골재의 실제 pH 저감 효율을 측정하고자 대형 칼럼 연속 용출 실험을 실시하였다. 배치실험의 경우, 고압셀 내부에서 3차 증류수 70 mL와 순환골재 시료 35 g을 혼합한 후 100 bar, $50^{\circ}C$ 조건에서 1시간 ~ 24시간 동안 반응시켜 중성화 처리하였다. 처리 후 건조시킨 폐모르타르 시료 10 g + 증류수 50 ml의 비율(1:5 비율)로 혼합하여 10분 동안 150 rpm으로 교반한 후 정치시키고, 총 15일 동안 용출시간 별로 용출수의 pH를 측정하였다. 중성화 처리 후 순환골재의 광물학적 변화를 확인하기 위하여 처리 전/후 XRD, TG/DTA 등의 분석을 실시하였다. 대형 칼럼(직경 16 cm, 높이 1 m) 용출실험을 위해 순환골재 2 종류를 대상으로 3시간 동안 중성화 처리한 순환골재와 처리하지 않은 순환골재로 칼럼을 충진한 후, 증류수를 칼럼 상부에 설치된 스프링클러를 통하여 일정하게 총 220 L를 주입하였다. 칼럼에 충진된 순환골재를 통과하여 하부로부터 유출되는 유출수의 pH와 $Ca^{2+}$ 농도를 시간별로 측정하였다. 배치실험 결과 폐모르타르 시료(직경 10 ~ 13 mm)의 경우 3시간의 중성화 처리에 의해 용출액의 pH가 법적 허용기준인 9.8이하를 유지하는 것으로 나타났다. $scCO_2$ 반응 후 골재의 XRD, TG/DTA 분석 결과, 중성화 처리에 의해 시멘트 모르타르의 주성분인 포틀랜다이트($Ca(OH)_2$) 성분이 감소한 반면 방해석($CaCO_3$)이 2차 광물로 생성됨을 알 수 있었다. 칼럼 실험 결과 중성화 처리한 순환골재의 용출수는 kinetic 효과를 고려한 경우에도 굵은골재와 잔골재 모두 용출수의 pH가 9.8 이하로 유지되어, $scCO_2$를 이용한 순환골재의 3시간 중성화 처리에 의해 건설현장에서 재활용이 가능한 것으로 밝혀졌다.

대용량 중력장 SPLITT Fractionation: 분획효율에 미치는 채널 두께와 유속의 영향 (Large scale splitter-less FFD-SPLITT fractionation: effect of flow rate and channel thickness on fractionation efficiency)

  • 유영석;최재영;김운중;음철헌;정의창;이승호
    • 분석과학
    • /
    • 제27권1호
    • /
    • pp.34-40
    • /
    • 2014
  • SPLITT 분획법(Split-flow thin cell fractionation, SF)은 입자성 물질이나 거대분자를 크기에 따라 연속적으로 분획할 수 있는 유용한 기술이다. SF에서는 얇은 리본 모양 채널의 입구와 출구에 존재하는 흐름분할기(flow stream splitter)에 의하여 시료의 분리가 이뤄진다. 대용량 중력장 FFD-SF 시스템(New large scale splitter-less FFD-SF system)은 흐름분할기를 사용하지 않고, 전액공급 모드(FFD mode) 로 작동하도록 디자인되었다. 전액공급 모드는 용매의 공급 없이 시료만을 채널 내로 주입함으로써 시료의 희석을 방지할 수 있는 장점을 가진다. 본 연구에서는 산업용 polyurethane (PU)입자를 시료로 이용하여, FFD-SF 장치의 성능에 미치는 시료의 주입유속과 채널두께의 영향을 확인하였다. Carrier 용액으로는 시료간 응집과 박테리아 생성을 방지하기 위하여 0.1% FL-70와 0.02% sodium azide ($NaN_3$)를 함유하는 수용액을 사용하였다. 시료농도는 0.02% (wt/vol)로 고정, 주입 양은 4.2~7.2 L/hr, 채널두께는 $900{\sim}1300{\mu}m$의 범위에서 실험하였다. 분획효율(Fractionation efficiency, FE)은 optical microscopy (OM)을 사용하여 입자의 수를 확인하여 계산하였으며, 시료회수율(sample recovery)은 membrane filter를 이용하여 분획된 시료의 무게로부터 계산하였다. 채널두께가 두꺼울수록 fraction-a의 분획효율이 증가하였고, 유속이 증가할수록 fraction-b의 분획효율 증가하였다. 시료회수율은 평균 95%를 보였다. 본 연구 결과는 새로운 splitter-less FFD-SF system은 다양한 마이크론 크기의 입자의 분획에 유용한 방법임을 보여준다.

의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究) (Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area)

  • 최선규;이재호;윤성택;소칠섭
    • 자원환경지질
    • /
    • 제25권4호
    • /
    • pp.417-433
    • /
    • 1992
  • 경북(慶北) 의성(義城)지역 연(鉛)-아연(亞鉛)-동광상(銅鑛床)(전흥(田興), 옥산(玉山) 광산)은 경상분지(慶尙盆地) 백악기(白堊紀) 퇴적암류내의 구조면을 충진한 열수(熱水) 석영-방해석 맥상(脈狀) 광체(鑛體)로 구성된다. 광화(鑛化)작용은 구조적으로 석영-유화물(硫化物)-유염(硫鹽)광물-적철석 정출기, barren 석영-형석 정출기, barren 방해석 정출기 등 3회로 구분된다. 광화(鑛化) I기(期)의 광석(鑛石)광물은 황철석, 황동석, 섬아연석, 방연석 및 Pb-Ag-Bi-Sb계 유염광물(硫鹽鑛物) 등으로서 두 광산의 광물조성은 유사하지만, 유비철석, 자류철석, 테트라헤드라이트, 철을 다량 함유하는(약 21 mole% FeS)섬아연석 등은 옥산(玉山)광산에서만이 산출된다. 변질대 집운모(緝雲母)에 의한 K-Ar 연령은 약 62 Ma로서, 광화(鑛化)작용이 인근 금성산(金城山) 칼데라 화산암류와 도처에 분포하는 산성암맥의 분출 및 관입 활동과 관련된 후기 백악기(白堊紀) 화성활동의 산물이었음을 지시한다. 광화(鑛化) I기(期) 광물정출은 0.7~6.3wt.% NaCl 상당염농도(相當閻濃度)를 갖는 광화유체(鑛化流體)로부터 > $380^{\circ}{\sim}240^{\circ}C$의 온도범위에서 진행되었고, 특히 동(銅)광물은 대부분 > $300^{\circ}C$의 고온에서 침전하였다. 유체포유물(流體包有物) 연구에 의하면, I기 연(鉛)-아연(亞鉛)-동(銅)광물의 침전은 비등(沸騰) 냉각(冷却) 희석(稀釋)등 비교적 복잡한 양식의 광액(鑛液)진화에 기인하였지만, 전흥(田興)광산의 경우 차가운 천수(天水)의 유입(流入)에 따른 냉각(冷却) 및 희석(稀釋)이 우세하였던 반면, 옥산(玉山)광산의 경우는 비등(沸騰)이 우세하게 진행되었다. 광화유체(鑛化流體)의 비등(沸騰)에 근거한 광화(鑛化)작용시의 압력은 초기 약 210 bar에서 후기 약 80 bar에 이르며, 이는 열수계(熱水系)가 정암압(靜岩壓)이 우세한 환경에서 정수압(靜水壓)이 우세한 환경으로 전이되었음을 지시하여 주고 따라서 광화심도(鑛化深度)는 약 900m로 추정된다. 유화물(硫化物)의 유황동위원소(硫黃同位元素) 조성 ($2.9{\sim}9.6$‰)에 근거한 초기 열수유체(熱水流體)의 전(全)유황동위원소값(${\delta}^{34}S_{{\Sigma}S}$)은 약 8.6‰이며, 이는 심부(深部) 화성원(火成源)의 유황이 퇴적암류내 sulfate (?)와 다소 혼합되었음을 나타내는 것으로 사료된다. 한편, 수속 및 산소동위원소 조성은 열수계(熱水系)내의 물이 대부분 천수(天水)로부터 기원하였음을 지시한다. 광물열역학(鑛物熱力學)적 고찰 결과, I기 광화유체(鑛化流體)의 온도 및 유황분압(硫黃分壓)의 변화는 두 광산에서 다소 상이하였다. 즉, 전흥(田興)광산의 경우 온도 감소와 더불어 유황분압(硫黃盆壓)은 황철석-적철석-자철석의 공존선을 따라 지속적으로 감소하였으나, 옥산(玉山)광산의 경우는 초기 황철석-자류철석 공존환경으로부터 후기 황철석-적철석-자철석의 공존환경으로 전이하였다. 한편, 차고 산화(酸化) 상태인 천수(天水)가 광액(鑛液)중에 혼입(混入)됨에 따라 광액의 산소분압(酸素盆壓)은 점차 증가하였다. 동(銅)광물의 침전은 주로 광화유체(鑛化流體)의 냉각에 따른 동염화복합체(銅鹽化複合體)($CuCl^{\circ}$)의 용해도 감소에 기인하였으리라 고려된다. 이러한 냉각 작용은 전흥(田興)광산의 경우 주로 천수혼입(天水混入)에 따른 결과였지만, 옥산(玉山)광산의 경우는 주로 광화유체(鑛化流體)의 비등(沸騰)에 기인하였다.

  • PDF

사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작 (Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel)

  • 오유나;신대현;김단우;전소영;김선옥; 이민희
    • 자원환경지질
    • /
    • 제56권5호
    • /
    • pp.603-618
    • /
    • 2023
  • 사용후핵연료(Spent nuclear fuel; SNF) 심지층 처분장의 완충재 소재로서 WRK (waste repository Korea) 벤토나이트가 적합한 지를 평가하기 위하여, 대표적인 방사성 핵종인 U (uranium)에 대한 WRK 벤토나이트의 흡/탈착 특성과 흡착 기작을 규명하는 다양한 분석, 흡/탈착 실내 실험, 동역학 흡착 모델링을 다양한 pH 조건에서 수행하였다. 다양한 특성 분석 결과, 주성분은 Ca-몬모릴로나이트이며, U 흡착 능력이 뛰어난 광물학적·구조적 특징들을 가지고 있었다. WRK 벤토나이트의 U 흡착 효율 및 탈착율을 규명하기 위한 흡/탈착 실험 결과, pH 5, 6, 10, 11 조건에서 WRK 벤토나이트와 U 오염수(1 mg/L)가 낮은 비율(2 g/L)로 혼합되었음에도 불구하고 높은 U 흡착 효율(>74%)과 낮은 U 탈착율(<14%)을 보였으며, 이는 WRK 벤토나이트가 SNF 처분장에서 U 거동을 제한하는 완충재 소재로서 적절하게 사용될 수 있음을 의미한다. pH 3과 7 조건에서는 상대적으로 낮은 U 흡착 효율(<45%)이 나타났으며, 이는 U가 용액의 pH 조건에 따라 다양한 형태로 존재하며, 존재 형태에 따라 상이한 U 흡착 기작을 가지기 때문으로 판단된다. 본 연구 실험 결과와 선행연구를 바탕으로 WRK 벤토나이트의 주요 화학적 U 흡착 기작을 pH 범위에 따라 용액 내 U의 존재 형태에 근거하여 설명하였다. pH 3 이하에서 주로 UO22+ 형태로 존재하는 U는 벤토나이트 표면의 Si-O 또는 Al-O(OH)와의 정전기적 인력(예: 이온 결합)에 의해 흡착되기 때문에 pH가 감소할수록 음전하 표면이 약해지는 WRK 벤토나이트 특성에 의해 비교적 낮은 U 흡착 효율이 나타났다. pH 7 이상의 알칼리성 조건에서 U는 음이온 U-수산화 복합체(UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7- 등)로 존재하며 비교적 높은 흡착 효율이 나타내는데, 이들은 벤토나이트에 포함된 Si-O 또는 Al-O(OH)의 산소원자를 공유하거나 리간드 교환에 의해 새로운 U-복합체가 형성되어 흡착되거나 수산화물 형태의 공침(co-precipitation)에 의해 벤토나이트에 고정되기 때문이다. pH 7의 중성 조건에서는 pH 5와 6보다 오히려 낮은 U 흡착 효율(42%)이 나타났는데, 이러한 결과는 용액 내 존재하는 탄산염(carbonate)에 의해 U가 U-수산화 복합체보다 용해도가 높은 U-탄산염 복합체로 존재하는 경우 가능하다. 연구 결과 pH를 약산성 또는 염기성 조건으로 유지하거나 용액 내 존재하는 탄산염을 제한함으로써 WRK 벤토나이트의 U 흡착 효율을 높일 수 있는 것으로 나타났다.