• Title/Summary/Keyword: energy absorbers

Search Result 71, Processing Time 0.029 seconds

Compositional Dependence of Photoluminescence of $ZnGa_2O_4$

  • Lee, Yong-Jei;Sahn Nahm;Kim, Myong-Ho;Suh, Kyung-Soo;Cho, Kyung-Ik;Yoo, Hyung-Joon;Byun, Jae-Dong
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.139-143
    • /
    • 1997
  • The photoluminescence characteristics of the zinc gallate have been investigated as a function of the composition and the firing atmosphere. Two distinct emission bands were observed whose peaks are 360 nm and 430 nm respectively. These emission bands are considered to be from two different emission centers. For $ZnO/Ga_2O_3$=49.3/50.7 or higher, 430 nm band is predominant and for $ZnO/Ga_2O_3$=49.2/50.8 or lower, 360nm band becomes predominant, whereas 430 nm band is almost completely suppressed. The shift of emission peak is though to be due to the change of the cation distribution with the zinc content in the spinel zinc gallate. Also, the emission centers responsible for the 360nm band are considered to be more efficient energy absorbers than the ones for the 430 nm band. Highly efficient green emitting phosphor was obtained by activating Zn-deficient zinc gallate with manganeses.

  • PDF

Characteristics of Track-Etch PN-3 Dosimeters for Alpha Particles (알파입자 부식-새김을 이용한 PN-3 선량측정기의 특성)

  • Yoo, Done-Sik
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • A method of detecting charged particles in an allyl diglycol carbonate material (PN-3) which is available, amorphous, optically clear and thermoset plastic in which nuclear particle tracks could be revealed by etching in hot NaOH solutions, has been investigated. It has been applied to the study of alpha particle tracks over an energy range of 3.17~5.49 MeV which has been obtained after having passed through several sheets of polycarbonate. The dose equivalent rate of the alpha source was calculated and the spark chamber was used in order to measure the range of alpha particles after having passed through different number of absorbers. The etching characteristics and the detection response of PN-3 have been studied as a funcion of lengths of etched tracks against the parameters of energies and of the track etching rate(V$_{T}$). The investigation of the etching process for alpha particles in the PN-3 provided the most interesting results.s.

  • PDF

The Effects of Design Parameter Uncertainty of the Shock Absorber on the Performance of Suspension System (충격 흡수기의 설계 파라미터 불확실성이 현가 장치 성능에 미치는 영향)

  • Lee, Choon-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.949-958
    • /
    • 2020
  • The functions of shock absorbers are to dampen body, suspend motions, dissipate impact energy, and control tire force variation. During the operation, hydraulic oil is passed between the chambers via a flow restrictions. Therefore the damping force characteristics of shock absorber is determined by the characteristics of orifices and flow restrictions. The uncertainty in design variable affects the performance of suspension system strongly. But, the researches about the influence of uncertainty in design variable such as a fluid restriction's property of shock absorber, on the suspension system performance was hardly ever proposed. In this paper, we used statistical method of Latin Hypercube sampling, and the effects of design variables uncertainty on the performance of suspension system was presented.

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.

Effects of NaF evaporation rate on the properties of $CuInSe_2$ thin-film solar cells

  • Park, Sun-Yong;Lee, Eun-U;Lee, Sang-Hwan;Park, Sang-Uk;Jeong, U-Jin;Kim, U-Nam;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.2-36.2
    • /
    • 2010
  • A small amount of Na incorporated in $CuInSe_2$ (CIS) absorption layer has become widely accepted as a requirement for efficient polycrystalline CIS solar cells. However, there is ongoing argument on the role of sodium incorporated in the absorber. In this paper, CIS absorption layers have been deposited using the three-stage co-evaporation process on Mo coated non-Alkali glass substrates. The NaF was evaporated during the second-stage with various fluxes. This paper is focusing on differences of micro-structure and composition ratio of the absorber realized with different Na contents and the variation of electrical properties of the cells with the corresponding absorbers. The analytical results of x-ray diffraction (XRD) patterns, field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS) and current-voltage characteristics will be discussed to investigate the effect of NaF flux on the CIS absorber formation and its cell performance.

  • PDF

Composite Skid Landing Gear Optimal Design for Light VTOL UAV (경량 수직이착륙 무인기의 복합재료 스키드 착륙장치 최적설계)

  • Lee, Jungjin;Kim, Myungjun;Kim, Yongha;Shin, Jungchan;Hwang, Kyungmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, we peformed optimal design of a composite skid landing gear, one of the solid spring shock absorbers, for light vertical takeoff and landing aircraft. Although a solid spring type has poor energy dissipation capability, it is commonly used for light aircraft where sink speeds are low and shock absorption is non-critical in terms of simplicity, low cost and weight reduction. In this paper, design parameters of solid spring such as sink speed, gear leg length, deflection and landing load factor were reviewed. In order to meet structural requirements such as deflection and strength, finally, we conducted optimal design of the composite skid landing gear for VTOL UAV using genetic algorithm and pattern search algorithm.

Experimental Study on Optimization of Absorber Configuration in Compression/Absorption Heat Pump with NH3/H2O Mixture (NH3/H2O 혼합냉매를 사용한 압축/흡수식 히트펌프 시스템의 흡수기 최적화에 관한 실험적 연구)

  • Kim, Ji-Young;Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • This research aims todevelopa compression/absorption hybrid heat pump system using an $NH_3/H_2O$ as working fluid.The heatpump cycle is based on a combination of compression and absorption cycles. The cycle consists of two-stage compressors, absorbers, a desorber, a desuperheater, solution heat exchangers, a solution pump, a rectifier, and a liquid/vapor separator. The compression/absorption hybrid heat pump was designed to produce hot water above $90^{\circ}C$ using high-temperature glide during a two-phase heat transfer. Distinct characteristics of the nonlinear temperature profile should be considered to maximize the performance of the absorber. In this study, the performance of the absorber was investigated depending on the capacity, shape, and arrangementof the plate heat exchangers with regard tothe concentration and distribution at the inlet of the absorber.

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.