• Title/Summary/Keyword: energetic damage model

Search Result 7, Processing Time 0.02 seconds

Development of Explosion Model of Energetic Materials Considering Shock to Detonation Transition and Damage by External Impact (외부 충격에 의한 손상을 고려한 화약과 추진제의 폭발모델 개발)

  • Kim, Bohoon;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.97-99
    • /
    • 2012
  • A pressure-based BOIK model considering Shock to Detonation Transition(SDT) and damage due to external fragment or bullet stimuli impact on energetic materials and analytical approach for determination of free parameters are proposed. The rate of product mass fraction(${\lambda}$) consists of ignition term that represents the initiation due to shock compression and growth term that describes propagation of detonation wave and strain term representing the morphological deformation induced by external impact.

  • PDF

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

A Study on the Estimation of Human Damage Caused by the LP Gas Flame in Enclosure using Probit Model

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.43-48
    • /
    • 2009
  • The energetic and environmental problems have been getting serious after the revolution of modern industry. Therefore, demand of gas as an eco-friendly energy source is increasing. With the demand of gas, the use of gas is also increased, so injury and loss of life by the fire have been increasing every year. Hence the influence on flame caused by Vapor Cloud Explosion in enclosure of experimental booth was calculated by using the API regulations. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analysis, the spot which is 5meter away from the flame has nearly 100% of the damage probability by the first-degree burn, 27.8% of the damage probability by the second-degree burn and 14.5% of the death probability by the fire.

  • PDF

Modeling of Reinforced Concrete for Reactor Cavity Analysis under Energetic Steam Explosion Condition

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.218-227
    • /
    • 2016
  • Background: Steam explosions may occur in nuclear power plants by molten fuel-coolant interactions when the external reactor vessel cooling strategy fails. Since this phenomenon can threaten structural barriers as well as major components, extensive integrity assessment research is necessary to ensure their safety. Method: In this study, the influence of yield criteria was investigated to predict the failure of a reactor cavity under a typical postulated condition through detailed parametric finite element analyses. Further analyses using a geometrically simplified equivalent model with homogeneous concrete properties were also performed to examine its effectiveness as an alternative to the detailed reinforcement concrete model. Results: By comparing finite element analysis results such as cracking, crushing, stresses, and displacements, the Willam-Warnke model was derived for practical use, and failure criteria applicable to the reactor cavity under the severe accident condition were discussed. Conclusion: It was proved that the reactor cavity sustained its intended function as a barrier to avoid release of radioactive materials, irrespective of the different yield criteria that were adopted. In addition, from a conservative viewpoint, it seems possible to employ the simplified equivalent model to determine the damage extent and weakest points during the preliminary evaluation stage.

원자층 식각을 이용한 Sub-32 nm Metal Gate/High-k Dielectric CMOSFETs의 저손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;Kim, Chan-Gyu;Kim, Jong-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.463-463
    • /
    • 2012
  • ITRS (international technology roadmap for semiconductors)에 따르면 MOS(metal-oxide-semiconductor)의 CD (critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/$SiO_2$를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두된다고 보고하고 있다. 일반적으로 high-k dielectric를 식각시 anisotropic 한 식각 형상을 형성시키기 위해서 plasma를 이용한 RIE (reactive ion etching)를 사용하고 있지만 PIDs (plasma induced damages)의 하나인 PIED (plasma induced edge damage)의 발생이 문제가 되고 있다. PIED의 원인으로 plasma의 direct interaction을 발생시켜 gate oxide의 edge에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 high-k dielectric의 식각공정에 HDP (high density plasma)의 ICP (inductively coupled plasma) source를 이용한 원자층 식각 장비를 사용하여 PIED를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. One-monolayer 식각을 위한 1 cycle의 원자층 식각은 총 4 steps으로 구성 되어 있다. 첫 번째 step은 Langmuir isotherm에 의하여 표면에 highly reactant atoms이나 molecules을 chemically adsorption을 시킨다. 두 번째 step은 purge 시킨다. 세 번째 step은 ion source를 이용하여 발생시킨 Ar low energetic beam으로 표면에 chemically adsorbed compounds를 desorption 시킨다. 네 번째 step은 purge 시킨다. 결과적으로 self limited 한 식각이 이루어짐을 볼 수 있었다. 실제 공정을 MOS의 high-k dielectric에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU (North Carolina State University) CVC model로 구한 EOT (equivalent oxide thickness)는 변화가 없으면서 mos parameter인 Ion/Ioff ratio의 증가를 볼 수 있었다. 그 원인으로 XPS (X-ray photoelectron spectroscopy)로 gate oxide의 atomic percentage의 분석 결과 식각 중 발생하는 gate oxide의 edge에 trap의 감소로 기인함을 확인할 수 있었다.

  • PDF

Numerical Simulations of Dynamic Response of Cased Reactive System Subject to Bullet Impact (총탄 충격이 가해진 반응 시스템의 파괴 거동에 관한 수치적 연구)

  • Kim, Bohoon;Kim, Minsung;Doh, Youngdae;Kim, Changkee;Yoo, Jichang;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.525-538
    • /
    • 2014
  • Safety of reactive systems is one of the most important research areas in the field of weapon development. A NoGo response or at least a low-order explosion should be ensured to prevent unexpected accidents when the reactive system is impacted by high-velocity projectile. We investigated the shock-induced detonation of cased reactive systems subject to a normal projectile impact to the cylindrical surface based on two-dimensional hydrodynamic simulations using the I&G chemical rate law. Two types of energetic materials, namely LX-17 and AP-based solid propellant, were considered to compare the dynamic responses of the reactive system when subjected to the threshold impact velocity. It was found that shock-to-detonation transition phenomena occurred in the cased LX-17, whereas no full reaction occurred in the propellant.